Neuronal dynamics : (Record no. 1788)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 05256nam a22001697a 4500 |
005 - DATE AND TIME OF LATEST TRANSACTION | |
control field | 20220909162017.0 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
fixed length control field | 220909b |||||||| |||| 00| 0 eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 9781107635197 |
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER | |
Classification number | 612.8 |
Item number | GER |
100 ## - MAIN ENTRY--PERSONAL NAME | |
Personal name | Gerstner, Wulfram |
245 ## - TITLE STATEMENT | |
Title | Neuronal dynamics : |
Remainder of title | from single neurons to networks and models of cognition |
260 ## - PUBLICATION, DISTRIBUTION, ETC. | |
Place of publication, distribution, etc. | , Cambridge, United Kingdom, |
Name of publisher, distributor, etc. | Cambridge University Press |
Date of publication, distribution, etc. | 2014 |
300 ## - PHYSICAL DESCRIPTION | |
Page number | 577P: |
505 ## - FORMATTED CONTENTS NOTE | |
Formatted contents note | <br/>Machine generated contents note: pt. ONE FOUNDATIONS OF NEURONAL DYNAMICS<br/>1. Introduction: neurons and mathematics<br/>1.1. Elements of neuronal systems<br/>1.2. Elements of neuronal dynamics<br/>1.3. Integrate-and-fire models<br/>1.4. Limitations of the leaky integrate-and-fire model<br/>1.5. What can we expect from integrate-and-fire models?<br/>1.6. Summary<br/>2. Ion channels and the Hodgkin<br/>Huxley model<br/>2.1. Equilibrium potential<br/>2.2. Hodgkin<br/>Huxley model<br/>2.3. The zoo of ion channels<br/>2.4. Summary<br/>3. Dendrites and synapses<br/>3.1. Synapses<br/>3.2. Spatial structure: the dendritic tree<br/>3.3. Spatial structure: axons<br/>3.4.Compartmental models<br/>3.5. Summary<br/>4. Dimensionality reduction and phase plane analysis<br/>4.1. Threshold effects<br/>4.2. Reduction to two dimensions<br/>4.3. Phase plane analysis<br/>4.4. Type I and type II neuron models<br/>4.5. Threshold and excitability<br/>4.6. Separation of time scales and reduction to one dimension<br/>4.7. Summary. Contents note continued: pt. TWO GENERALIZED INTEGRATE-AND-FIRE NEURONS<br/>5. Nonlinear integrate-and-fire models<br/>5.1. Thresholds in a nonlinear integrate-and-fire model<br/>5.2. Exponential integrate-and-fire model<br/>5.3. Quadratic integrate and fire<br/>5.4. Summary<br/>6. Adaptation and firing patterns<br/>6.1. Adaptive exponential integrate-and-fire<br/>6.2. Firing patterns<br/>6.3. Biophysical origin of adaptation<br/>6.4. Spike Response Model (SRM)<br/>6.5. Summary<br/>7. Variability of spike trains and neural codes<br/>7.1. Spike-train variability<br/>7.2. Mean firing rate<br/>7.3. Interval distribution and coefficient of variation<br/>7.4. Autocorrelation function and noise spectrum<br/>7.5. Renewal statistics<br/>7.6. The problem of neural coding<br/>7.7. Summary<br/>8. Noisy input models: barrage of spike arrivals<br/>8.1. Noise input<br/>8.2. Stochastic spike arrival<br/>8.3. Subthreshold vs. superthreshold regime<br/>8.4. Diffusion limit and Fokker<br/>Planck equation (*)<br/>8.5. Summary. Contents note continued: 9. Noisy output: escape rate and soft threshold<br/>9.1. Escape noise<br/>9.2. Likelihood of a spike train<br/>9.3. Renewal approximation of the Spike Response Model<br/>9.4. From noisy inputs to escape noise<br/>9.5. Summary<br/>10. Estimating parameters of probabilistic neuron models<br/>10.1. Parameter optimization in linear and nonlinear models<br/>10.2. Statistical formulation of encoding models<br/>10.3. Evaluating goodness-of-fit<br/>10.4. Closed-loop stimulus design<br/>10.5. Summary<br/>11. Encoding and decoding with stochastic neuron models<br/>11.1. Encoding models for intracellular recordings<br/>11.2. Encoding models in systems neuroscience<br/>11.3. Decoding<br/>11.4. Summary<br/>pt. THREE NETWORKS OF NEURONS AND POPULATION ACTIVITY<br/>12. Neuronal populations<br/>12.1. Columnar organization<br/>12.2. Identical neurons: a mathematical abstraction<br/>12.3. Connectivity schemes<br/>12.4. From microscopic to macroscopic<br/>12.5. Summary. Contents note continued: 13. Continuity equation and the Fokker<br/>Planck approach<br/>13.1. Continuity equation<br/>13.2. Stochastic spike arrival<br/>13.3. Fokker<br/>Planck equation<br/>13.4.Networks of leaky integrate-and-fire neurons<br/>13.5.Networks of nonlinear integrate-and-fire neurons<br/>13.6. Neuronal adaptation and synaptic conductance<br/>13.7. Summary<br/>14. Quasi-renewal theory and the integral-equation approach<br/>14.1. Population activity equations<br/>14.2. Recurrent networks and interacting populations<br/>14.3. Linear response to time-dependent input<br/>14.4. Density equations vs. integral equations<br/>14.5. Adaptation in population equations<br/>14.6. Heterogeneity and finite size<br/>14.7. Summary<br/>15. Fast transients and rate models<br/>15.1. How fast are population responses?<br/>15.2. Fast transients vs. slow transients in models<br/>15.3. Rate models<br/>15.4. Summary<br/>pt. FOUR DYNAMICS OF COGNITION<br/>16.Competing populations and decision making<br/>16.1. Perceptual decision making. Contents note continued: 16.2.Competition through common inhibition<br/>16.3. Dynamics of decision making<br/>16.4. Alternative decision models<br/>16.5. Human decisions, determinism, and free will<br/>16.6. Summary<br/>17. Memory and attractor dynamics<br/>17.1. Associations and memory<br/>17.2. Hopfield model<br/>17.3. Memory networks with spiking neurons<br/>17.4. Summary<br/>18. Cortical field models for perception<br/>18.1. Spatial continuum model<br/>18.2. Input-driven regime and sensory cortex models<br/>18.3. Bump attractors and spontaneous pattern formation<br/>18.4. Summary<br/>19. Synaptic plasticity and learning<br/>19.1. Hebb rule and experiments<br/>19.2. Models of Hebbian learning<br/>19.3. Unsupervised learning<br/>19.4. Reward-based learning<br/>19.5. Summary<br/>20. Outlook: dynamics in plastic networks<br/>20.1. Reservoir computing<br/>20.2. Oscillations: good or bad?<br/>20.3. Helping patients<br/>20.4. Summary |
520 ## - SUMMARY, ETC. | |
Summary, etc. | This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience |
942 ## - ADDED ENTRY ELEMENTS (KOHA) | |
Source of classification or shelving scheme | Dewey Decimal Classification |
Koha item type | Books |
952 ## - LOCATION AND ITEM INFORMATION (KOHA) | |
-- | 5562 |
952 ## - LOCATION AND ITEM INFORMATION (KOHA) | |
-- | 5563 |
952 ## - LOCATION AND ITEM INFORMATION (KOHA) | |
-- | 5564 |
Withdrawn status | Lost status | Source of classification or shelving scheme | Damaged status | Not for loan | Home library | Current library | Date acquired | Source of acquisition | Cost, normal purchase price | Inventory number | Total Checkouts | Full call number | Barcode | Date last seen | Cost, replacement price | Price effective from | Currency | Koha item type | Collection code | Shelving location |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dewey Decimal Classification | IIITDM Kurnool | IIITDM Kurnool | 09.09.2022 | Technical Bureau India | 38.99 | TB1118 DT 3/8/22 | 612.8 GER | 0004870 | 09.09.2022 | 38.99 | 09.09.2022 | GBP | Books | |||||||
Dewey Decimal Classification | Not For Loan | IIITDM Kurnool | IIITDM Kurnool | 09.09.2022 | Technical Bureau India | 38.99 | TB1118 DT 3/8/22 | 612.8 GER | 0004871 | 09.09.2022 | 38.99 | 09.09.2022 | GBP | Reference | Reference | Reference | ||||
Dewey Decimal Classification | IIITDM Kurnool | IIITDM Kurnool | 09.09.2022 | Technical Bureau India | 38.99 | TB1118 DT 3/8/22 | 612.8 GER | 0004872 | 09.09.2022 | 38.99 | 09.09.2022 | GBP | Books |