MARC details
000 -LEADER |
fixed length control field |
13057nam a22002057a 4500 |
005 - DATE AND TIME OF LATEST TRANSACTION |
control field |
20240216102602.0 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
240216b |||||||| |||| 00| 0 eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9781119666004 |
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER |
Classification number |
621.382 |
Item number |
ROH |
100 ## - MAIN ENTRY--PERSONAL NAME |
Personal name |
Ulrich L. Rohde, |
245 ## - TITLE STATEMENT |
Title |
Microwave and Wireless Synthesizers: Theory and Design, |
Statement of responsibility, etc. |
Ulrich L. Rohde, Enrico Rubiola, Jerry C. Whitaker |
250 ## - EDITION STATEMENT |
Edition statement |
Second Edition |
260 ## - PUBLICATION, DISTRIBUTION, ETC. |
Place of publication, distribution, etc. |
NEW DELHI |
Name of publisher, distributor, etc. |
WILEY |
Date of publication, distribution, etc. |
2021 |
300 ## - PHYSICAL DESCRIPTION |
Page number |
794P |
505 ## - FORMATTED CONTENTS NOTE |
Title |
1 Loop Fundamentals 1<br/><br/>1-1 Introduction to Linear Loops 1<br/><br/>1-2 Characteristics of a Loop 3<br/><br/>1-3 Digital Loops 7<br/><br/>1-4 Type 1 First-Order Loop 10<br/><br/>1-5 Type 1 Second-Order Loop 12<br/><br/>1-6 Type 2 Second-Order Loop 20<br/><br/>1-6-1 Transient Behavior of Digital Loops Using Tri-state Phase Detectors 22<br/><br/>1-7 Type 2 Third-Order Loop 27<br/><br/>1-7-1 Transfer Function of Type 2 Third-Order Loop 28<br/><br/>1-7-2 FM Noise Suppression 35<br/><br/>1-8 Higher-Order Loops 36<br/><br/>1-8-1 Fifth-Order Loop Transient Response 36<br/><br/>1-9 Digital Loops with Mixers 40<br/><br/>1-10 Acquisition 44<br/><br/>Example 1 48<br/><br/>1-10-1 Pull-in Performance of the Digital Loop 49<br/><br/>1-10-2 Coarse Steering of the VCO as an Acquisition Aid 52<br/><br/>1-10-3 Loop Stability 54<br/><br/>References 62<br/><br/>Suggested Reading 62<br/><br/>2 Almost all About Phase Noise 65<br/><br/>2-1 Introduction to Phase Noise 65<br/><br/>2-1-1 The Clock Signal 65<br/><br/>2-1-2 The Power Spectral Density (PSD) 68<br/><br/>2-1-3 Basics of Noise 71<br/><br/>2-1-4 Phase and Frequency Noise 78<br/><br/>2-2 The Allan Variance and Other Two-Sample Variances 88<br/><br/>2-2-1 Frequency Counters 89<br/><br/>2-2-2 The Two-Sample Variances AVAR, MVAR, and PVAR 94<br/><br/>2-2-3 Conversion from Spectra to Two-Sample Variances 96<br/><br/>2-3 Phase Noise in Components 100<br/><br/>2-3-1 Amplifiers 100<br/><br/>2-3-2 Frequency Dividers 104<br/><br/>2-3-3 Frequency Multipliers 112<br/><br/>2-3-4 Direct Digital Synthesizer (DDS) 117<br/><br/>2-3-5 Phase Detectors 128<br/><br/>2-3-6 Noise Contribution from Power Supplies 132<br/><br/>2-4 Phase Noise in Oscillators 133<br/><br/>2-4-1 Modern View of the Leeson Model 134<br/><br/>2-4-2 Circumventing the Resonator’s Thermal Noise 144<br/><br/>2-4-3 Oscillator Hacking 146<br/><br/>2-5 The Measurement of Phase Noise 153<br/><br/>2-5-1 Double-Balanced Mixer Instruments 154<br/><br/>2-5-2 The Cross-Spectrum Method 166<br/><br/>2-5-3 Digital Instruments 171<br/><br/>2-5-4 Pitfalls and Limitations of the Cross-Spectrum Measurements 180<br/><br/>2-5-5 The Bridge (Interferometric) Method 187<br/><br/>2-5-6 Artifacts and Oddities Often Found in the Real World 190<br/><br/>References 193<br/><br/>Suggested Readings 197<br/><br/>3 Special Loops 201<br/><br/>3-1 Introduction 201<br/><br/>3-2 Direct Digital Synthesis Techniques 201<br/><br/>3-2-1 A First Look at Fractional N 202<br/><br/>3-2-2 Digital Waveform Synthesizers 203<br/><br/>3-2-3 Signal Quality 220<br/><br/>3-2-4 Future Prospects 235<br/><br/>3-3 Loops with Delay Line as Phase Comparators 236<br/><br/>3-4 Fractional Division N Synthesizers 237<br/><br/>3-4-1 Example Implementation 240<br/><br/>3-4-2 Some Special Past Patents for Fractional Division N Synthesizers 253<br/><br/>References 255<br/><br/>Bibliography 256<br/><br/>Fractional Division N Readings 256<br/><br/>4 Loop Components 259<br/><br/>4-1 Introduction to Oscillators and Their Mathematical Treatment 259<br/><br/>4-2 The Colpitts Oscillator 259<br/><br/>4-2-1 Linear Approach 260<br/><br/>4-2-2 Design Example for a 350MHz Fixed-Frequency Colpitts Oscillator 269<br/><br/>4-2-3 Validation Circuits 282<br/><br/>4-2-4 Series Feedback Oscillator 314<br/><br/>4-2-5 2400 MHz MOSFET-Based Push–Pull Oscillator 319<br/><br/>4-2-6 Oscillators for IC Applications 336<br/><br/>4-2-7 Noise in Semiconductors and Circuits 337<br/><br/>4-2-8 Summary 339<br/><br/>4-3 Use of Tuning Diodes 339<br/><br/>4-3-1 Diode Tuned Resonant Circuits 340<br/><br/>4-3-2 Practical Circuits 344<br/><br/>4-4 Use of Diode Switches 345<br/><br/>4-4-1 Diode Switches for Electronic Band Selection 346<br/><br/>4-4-2 Use of Diodes for Frequency Multiplication 347<br/><br/>4-5 Reference Frequency Standards 351<br/><br/>4-5-1 Specifying Oscillators 351<br/><br/>4-5-2 Typical Examples of Crystal Oscillator Specifications 352<br/><br/>4-6 Mixer Applications 354<br/><br/>4-7 Phase/Frequency Comparators 357<br/><br/>4-7-1 Diode Rings 357<br/><br/>4-7-2 Exclusive ORs 358<br/><br/>4-7-3 Sample/Hold Detectors 362<br/><br/>4-7-4 Edge-Triggered JK Master/Slave Flip-Flops 368<br/><br/>4-7-5 Digital Tri-State Comparators 369<br/><br/>4-8 Wideband High-Gain Amplifiers 378<br/><br/>4-8-1 Summation Amplifiers 378<br/><br/>4-8-2 Differential Limiters 382<br/><br/>4-8-3 Isolation Amplifiers 382<br/><br/>4-8-4 Example Implementations 387<br/><br/>4-9 Programmable Dividers 393<br/><br/>4-9-1 Asynchronous Counters 393<br/><br/>4-9-2 Programmable Synchronous Up-/Down-Counters 394<br/><br/>4-9-3 Advanced Implementation Example 405<br/><br/>4-9-4 Swallow Counters/Dual-Modulus Counters 407<br/><br/>4-9-5 Look-Ahead and Delay Compensation 411<br/><br/>4-10 Loop Filters 421<br/><br/>4-10-1 Passive RC Filters 421<br/><br/>4-10-2 Active RC Filters 422<br/><br/>4-10-3 Active Second-Order Low-Pass Filters 423<br/><br/>4-10-4 Passive LC Filters 426<br/><br/>4-10-5 Spur-Suppression Techniques 427<br/><br/>4-11 Microwave Oscillator Design 430<br/><br/>4-11-1 The Compressed Smith Chart 432<br/><br/>4-11-2 Series or Parallel Resonance 434<br/><br/>4-11-3 Two-Port Oscillator Design 435<br/><br/>4-12 Microwave Resonators 444<br/><br/>4-12-1 SAW Oscillators 445<br/><br/>4-12-2 Dielectric Resonators 445<br/><br/>4-12-3 YIG Oscillators 448<br/><br/>4-12-4 Varactor Resonators 452<br/><br/>4-12-5 Ceramic Resonators 455<br/><br/>References 461<br/><br/>Suggested Readings 464<br/><br/>5 Digital PLL Synthesizers 471<br/><br/>5-1 Multiloop Synthesizers Using Different Techniques 471<br/><br/>5-1-1 Direct Frequency Synthesis 471<br/><br/>5-1-2 Multiple Loops 473<br/><br/>5-2 System Analysis 477<br/><br/>5-3 Low-Noise Microwave Synthesizers 484<br/><br/>5-3-1 Building Blocks 485<br/><br/>5-3-2 Output Loop Response 489<br/><br/>5-3-3 Low Phase Noise References: Frequency Standards 490<br/><br/>5-3-4 Critical Stage 493<br/><br/>5-3-5 Time Domain Analysis 503<br/><br/>5-3-6 Summary 508<br/><br/>5-3-7 Two Commercial Synthesizer Examples 512<br/><br/>5-4 Microprocessor Applications in Synthesizers 518<br/><br/>5-5 Transceiver Applications 523<br/><br/>5-6 About Bits, Symbols, and Waveforms 526<br/><br/>5-6-1 Representation of a Modulated RF Carrier 527<br/><br/>5-6-2 Generation of the Modulated Carrier 529<br/><br/>5-6-3 Putting It all Together 533<br/><br/>5-6-4 Combination of Techniques 535<br/><br/>Acknowledgments 537<br/><br/>References 540<br/><br/>Bibliography and Suggested Reading 540<br/><br/>6 A High-Performance Hybrid Synthesizer 543<br/><br/>6-1 Introduction 543<br/><br/>6-2 Basic Synthesizer Approach 544<br/><br/>6-3 Loop Filter Design 548<br/><br/>6-4 Summary 556<br/><br/>Bibliography 557<br/><br/>A Mathematical Review 559<br/><br/>A-1 Functions of a Complex Variable 559<br/><br/>A-2 Complex Planes 561<br/><br/>A-2-1 Functions in the Complex Frequency Plane 565<br/><br/>A-3 Bode Diagram 568<br/><br/>A-4 Laplace Transform 582<br/><br/>A-4-1 The Step Function 583<br/><br/>A-4-2 The Ramp 584<br/><br/>A-4-3 Linearity Theorem 584<br/><br/>A-4-4 Differentiation and Integration 585<br/><br/>A-4-5 Initial Value Theorem 585<br/><br/>A-4-6 Final Value Theorem 585<br/><br/>A-4-7 The Active Integrator 585<br/><br/>A-4-8 Locking Behavior of the PLL 587<br/><br/>A-5 Low-Noise Oscillator Design 590<br/><br/>A-5-1 Example Implementation 590<br/><br/>A-6 Oscillator Amplitude Stabilization 594<br/><br/>A-7 Very Low Phase Noise VCO for 800 MHZ 602<br/><br/>References 605<br/><br/>B A General-Purpose Nonlinear Approach to the Computation of Sideband Phase Noise in Free-Running Microwave and RF Oscillators 607<br/><br/>B-1 Introduction 607<br/><br/>B-2 Noise Generation in Oscillators 608<br/><br/>B-3 Bias-Dependent Noise Model 609<br/><br/>B-3-1 Bias-Dependent Model 617<br/><br/>B-3-2 Derivation of the Model 617<br/><br/>B-4 General Concept of Noisy Circuits 619<br/><br/>B-4-1 Noise from Linear Elements 620<br/><br/>B-5 Noise Figure of Mixer Circuits 622<br/><br/>B-6 Oscillator Noise Analysis 624<br/><br/>B-7 Limitations of the Frequency-Conversion Approach 625<br/><br/>B-7-1 Assumptions 626<br/><br/>B-7-2 Conversion and Modulation Noise 626<br/><br/>B-7-3 Properties of Modulation Noise 626<br/><br/>B-7-4 Noise Analysis of Autonomous Circuits 627<br/><br/>B-7-5 Conversion Noise Analysis Results 627<br/><br/>B-7-6 Modulation Noise Analysis Results 627<br/><br/>B-8 Summary of the Phase Noise Spectrum of the Oscillator 628<br/><br/>B-9 Verification Examples for the Calculation of Phase Noise in Oscillators Using Nonlinear Techniques 628<br/><br/>B-9-1 Example 1: High-Q Case Microstrip DRO 628<br/><br/>B-9-2 Example 2: 10 MHz Crystal Oscillator 629<br/><br/>B-9-3 Example 3: The 1-GHz Ceramic Resonator VCO 630<br/><br/>B-9-4 Example 4: Low Phase Noise FET Oscillator 632<br/><br/>B-9-5 Example 5: Millimeter-Wave Applications 636<br/><br/>B-9-6 Example 6: Discriminator Stabilized DRO 639<br/><br/>B-10 Summary 641<br/><br/>References 643<br/><br/>C Example of Wireless Synthesizers Using Commercial ICs 645<br/><br/>D MMIC-Based Synthesizers 665<br/><br/>D-1 Introduction 665<br/><br/>Bibliography 668<br/><br/>E Articles on Design of Dielectric Resonator Oscillator 671<br/><br/>E-1 The Design of an Ultra-Low Phase Noise DRO 671<br/><br/>E-1-1 Basic Considerations and Component Selection 671<br/><br/>E-1-2 Component Selection 672<br/><br/>E-1-3 DRO Topologies 675<br/><br/>E-1-4 Small Signal Design Approach for the Parallel Feedback Type DRO 677<br/><br/>E-1-5 Simulated Versus Measured Results 683<br/><br/>E-1-6 Physical Embodiment 685<br/><br/>E-1-7 Acknowledgments 685<br/><br/>E-1-8 Final Remarks 688<br/><br/>References 692<br/><br/>Bibliography 692<br/><br/>E-2 A Novel Oscillator Design with Metamaterial-MöBius Coupling to a Dielectric Resonator 692<br/><br/>E-2-1 Abstract 692<br/><br/>E-2-2 Introduction 693<br/><br/>References 699<br/><br/>F Opto-Electronically Stabilized RF Oscillators 701<br/><br/>F-1 Introduction 701<br/><br/>F-1-1 Oscillator Basics 701<br/><br/>F-1-2 Resonator Technologies 701<br/><br/>F-1-3 Motivation for OEO 704<br/><br/>F-1-4 Operation Principle of the OEO 704<br/><br/>F-2 Experimental Evaluation and Thermal Stability of OEO 705<br/><br/>F-2-1 Experimental Setup 705<br/><br/>F-2-2 Phase Noise Measurements 708<br/><br/>F-2-3 Thermal Sensitivity Analysis of Standard Fibers 709<br/><br/>F-2-4 Temperature Sensitivity Measurements 710<br/><br/>F-2-5 Temperature Sensitivity Improvement with HC-PCF 712<br/><br/>F-2-6 Improve Thermal Stability Versus Phase Noise Degradation 712<br/><br/>F-2-7 Passive Temperature Compensation 713<br/><br/>F-2-8 Improving Effective Q with Raman Amplification 714<br/><br/>F-3 Forced Oscillation Techniques of OEO 718<br/><br/>F-3-1 Analysis of Standard Injection-Locked (IL) Oscillators 718<br/><br/>F-3-2 Analysis of Self-Injection Locked (SIL) Oscillators 720<br/><br/>F-3-3 Experimental Verification of Self-Injection Locked (SIL) Oscillators 721<br/><br/>F-3-4 Analysis of Standard Phase Locked Loop (PLL) Oscillators 723<br/><br/>F-3-5 Analysis of Self Phase Locked Loop (SPLL) Oscillators 725<br/><br/>F-3-6 Experimental Verification of Self-Phase Locked Loop (SPLL) Oscillators 726<br/><br/>F-3-7 Analysis of Self-Injection Locked Phase Locked Loop (SILPLL) Oscillators 728<br/><br/>F-4 SILPLL Based X- and K-Band Frequency Synthesizers 731<br/><br/>F-4-1 X-Band Frequency Synthesizer 732<br/><br/>F-4-2 19′′Rack-Mountable K-Band Frequency Synthesizer 737<br/><br/>F-5 Integrated OEO Realization Using Si-Photonics 742<br/><br/>F-6 Compact OEO Using InP Multi-Mode Semiconductor Laser 744<br/><br/>F-6-1 Structure of Multi-mode InP Laser 744<br/><br/>F-6-2 Multi-mode Laser and Inter-Modal RF Oscillation 745<br/><br/>F-6-3 Self-Forced Frequency Stabilizations 747<br/><br/>F-7 Discussions 752<br/><br/>Acknowledgments 753<br/><br/>References 754<br/><br/>G Phase Noise Analysis, then and Today 761<br/><br/>G-1 Introduction 761<br/><br/>G-2 Large-Signal Noise Analysis 762<br/><br/>References 769<br/><br/>H A Novel Approach to Frequency and Phase Settling Time Measurements on PLL Circuits 771<br/><br/>H-1 Introduction 771<br/><br/>H-2 Settling Time Measurement Overview 771<br/><br/>H-2-1 Theoretical Background of Frequency Settling Time 771<br/><br/>H-2-2 Frequency Settling Measurement in the Past 772<br/><br/>H-3 R&S FSWP Phase Noise Analyzer 774<br/><br/>H-3-1 Phase Noise Analyzer Architecture 774<br/><br/>H-3-2 Typical Test Setup for Settling Time Measurements 776<br/><br/>H-4 Frequency Hopping and Settling Time Measurements in Practice 776<br/><br/>H-4-1 Trigger on Wideband Frequency Hopping Signals 776<br/><br/>H-4-2 Frequency and Phase Settling Time Measurement 777<br/><br/>H-5 Conclusion 780<br/><br/>Index 783 |
520 ## - SUMMARY, ETC. |
Summary, etc. |
The second edition includes extensively revised content throughout, including a modern approach to dealing with the noise and spurious response of loops and updated material on digital signal processing and architectures. Reflecting today's technology, new practical and validated examples cover a combination of analog and digital synthesizers and hybrid systems. Enhanced and expanded chapters discuss implementations of direct digital synthesis (DDS) architectures, the voltage-controlled oscillator (VCO), crystal and other high-Q based oscillators, arbitrary waveform generation, vector signal generation, and other current tools and techniques. Now requiring no additional literature to be useful, this comprehensive, one-stop resource:<br/><br/>Provides a fully reviewed, updated, and enhanced presentation of microwave and wireless synthesizers<br/>Presents a clear mathematical method for designing oscillators for best noise performance at both RF and microwave frequencies<br/>Contains new illustrations, figures, diagrams, and examples<br/>Includes extensive appendices to aid in calculating phase noise in free-running oscillators, designing VHF and UHF oscillators with CAD software, using state-of-the-art synthesizer chips, and generating millimeter wave frequencies using the delay line principle |
700 ## - ADDED ENTRY--PERSONAL NAME |
Personal name |
Enrico Rubiola, Jerry C. Whitaker |
700 ## - ADDED ENTRY--PERSONAL NAME |
Personal name |
Enrico Rubiola, Jerry C. Whitaker |
942 ## - ADDED ENTRY ELEMENTS (KOHA) |
Source of classification or shelving scheme |
Dewey Decimal Classification |
Koha item type |
Books |
952 ## - LOCATION AND ITEM INFORMATION (KOHA) |
-- |
6119 |