Artificial Intelligence Programming with Python: (Record no. 2095)

MARC details
000 -LEADER
fixed length control field 10839nam a22001697a 4500
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240222095528.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 240222b |||||||| |||| 00| 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781119820864
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 006.3
Item number XIA
100 ## - MAIN ENTRY--PERSONAL NAME
Personal name Perry Xiao
245 ## - TITLE STATEMENT
Title Artificial Intelligence Programming with Python:
Remainder of title From Zero to Hero
Statement of responsibility, etc. Perry Xiao
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. Delhi
Name of publisher, distributor, etc. Wiley
Date of publication, distribution, etc. 2022
300 ## - PHYSICAL DESCRIPTION
Page number 720p
505 ## - FORMATTED CONTENTS NOTE
Title Chapter 1 Introduction to AI 3<br/><br/>1.1 What Is AI? 3<br/><br/>1.2 The History of AI 5<br/><br/>1.3 AI Hypes and AI Winters 9<br/><br/>1.4 The Types of AI 11<br/><br/>1.5 Edge AI and Cloud AI 12<br/><br/>1.6 Key Moments of AI 14<br/><br/>1.7 The State of AI 17<br/><br/>1.8 AI Resources 19<br/><br/>1.9 Summary 21<br/><br/>1.10 Chapter Review Questions 22<br/><br/>Chapter 2 AI Development Tools 23<br/><br/>2.1 AI Hardware Tools 23<br/><br/>2.2 AI Software Tools 24<br/><br/>2.3 Introduction to Python 27<br/><br/>2.4 Python Development Environments 30<br/><br/>2.4 Getting Started with Python 34<br/><br/>2.5 AI Datasets 45<br/><br/>2.6 Python AI Frameworks 47<br/><br/>2.7 Summary 49<br/><br/>2.8 Chapter Review Questions 50<br/><br/>Part II Machine Learning and Deep Learning<br/><br/>Chapter 3 Machine Learning 53<br/><br/>3.1 Introduction 53<br/><br/>3.2 Supervised Learning: Classifications 55<br/><br/>Scikit-Learn Datasets 56<br/><br/>Support Vector Machines 56<br/><br/>Naive Bayes 67<br/><br/>Linear Discriminant Analysis 69<br/><br/>Principal Component Analysis 70<br/><br/>Decision Tree 73<br/><br/>Random Forest 76<br/><br/>K-Nearest Neighbors 77<br/><br/>Neural Networks 78<br/><br/>3.3 Supervised Learning: Regressions 80<br/><br/>3.4 Unsupervised Learning 89<br/><br/>K-means Clustering 89<br/><br/>3.5 Semi-supervised Learning 91<br/><br/>3.6 Reinforcement Learning 93<br/><br/>Q-Learning 95<br/><br/>3.7 Ensemble Learning 102<br/><br/>3.8 AutoML 106<br/><br/>3.9 PyCaret 109<br/><br/>3.10 LazyPredict 111<br/><br/>3.11 Summary 115<br/><br/>3.12 Chapter Review Questions 116<br/><br/>Chapter 4 Deep Learning 117<br/><br/>4.1 Introduction 117<br/><br/>4.2 Artificial Neural Networks 120<br/><br/>4.3 Convolutional Neural Networks 125<br/><br/>4.3.1 LeNet, AlexNet, GoogLeNet 129<br/><br/>4.3.2 VGG, ResNet, DenseNet, MobileNet, EffecientNet, and YOLO 140<br/><br/>4.3.3 U-Net 152<br/><br/>4.3.4 AutoEncoder 157<br/><br/>4.3.5 Siamese Neural Networks 161<br/><br/>4.3.6 Capsule Networks 163<br/><br/>4.3.7 CNN Layers Visualization 165<br/><br/>4.4 Recurrent Neural Networks 173<br/><br/>4.4.1 Vanilla RNNs 175<br/><br/>4.4.2 Long-Short Term Memory 176<br/><br/>4.4.3 Natural Language Processing and Python Natural Language Toolkit 183<br/><br/>4.5 Transformers 187<br/><br/>4.5.1 BERT and ALBERT 187<br/><br/>4.5.2 GPT-3 189<br/><br/>4.5.3 Switch Transformers 190<br/><br/>4.6 Graph Neural Networks 191<br/><br/>4.6.1 SuperGLUE 192<br/><br/>4.7 Bayesian Neural Networks 192<br/><br/>4.8 Meta Learning 195<br/><br/>4.9 Summary 197<br/><br/>4.10 Chapter Review Questions 197<br/><br/>Part III AI Applications<br/><br/>Chapter 5 Image Classification 201<br/><br/>5.1 Introduction 201<br/><br/>5.2 Classification with Pre-trained Models 203<br/><br/>5.3 Classification with Custom Trained Models: Transfer Learning 209<br/><br/>5.4 Cancer/Disease Detection 227<br/><br/>5.4.1 Skin Cancer Image Classification 227<br/><br/>5.4.2 Retinopathy Classification 229<br/><br/>5.4.3 Chest X-Ray Classification 230<br/><br/>5.4.5 Brain Tumor MRI Image Classification 231<br/><br/>5.4.5 RSNA Intracranial Hemorrhage Detection 231<br/><br/>5.5 Federated Learning for Image Classification 232<br/><br/>5.6 Web-Based Image Classification 233<br/><br/>5.6.1 Streamlit Image File Classification 234<br/><br/>5.6.2 Streamlit Webcam Image Classification 242<br/><br/>5.6.3 Streamlit from GitHub 248<br/><br/>5.6.4 Streamlit Deployment 249<br/><br/>5.7 Image Processing 250<br/><br/>5.7.1 Image Stitching 250<br/><br/>5.7.2 Image Inpainting 253<br/><br/>5.7.3 Image Coloring 255<br/><br/>5.7.4 Image Super Resolution 256<br/><br/>5.7.5 Gabor Filter 257<br/><br/>5.8 Summary 262<br/><br/>5.9 Chapter Review Questions 263<br/><br/>Chapter 6 Face Detection and Face Recognition 265<br/><br/>6.1 Introduction 265<br/><br/>6.2 Face Detection and Face Landmarks 266<br/><br/>6.3 Face Recognition 279<br/><br/>6.3.1 Face Recognition with Face_Recognition 279<br/><br/>6.3.2 Face Recognition with OpenCV 285<br/><br/>6.3.3 GUI-Based Face Recognition System 288<br/><br/>Other GUI Development Libraries 300<br/><br/>6.3.4 Google FaceNet 301<br/><br/>6.4 Age, Gender, and Emotion Detection 301<br/><br/>6.4.1 DeepFace 302<br/><br/>6.4.2 TCS-HumAIn-2019 305<br/><br/>6.5 Face Swap 309<br/><br/>6.5.1 Face_Recognition and OpenCV 310<br/><br/>6.5.2 Simple_Faceswap 315<br/><br/>6.5.3 DeepFaceLab 322<br/><br/>6.6 Face Detection Web Apps 322<br/><br/>6.7 How to Defeat Face Recognition 334<br/><br/>6.8 Summary 335<br/><br/>6.9 Chapter Review Questions 336<br/><br/>Chapter 7 Object Detections and Image Segmentations 337<br/><br/>7.1 Introduction 337<br/><br/>R-CNN Family 338<br/><br/>YOLO 339<br/><br/>SSD 340<br/><br/>7.2 Object Detections with Pretrained Models 341<br/><br/>7.2.1 Object Detection with OpenCV 341<br/><br/>7.2.2 Object Detection with YOLO 346<br/><br/>7.2.3 Object Detection with OpenCV and Deep Learning 351<br/><br/>7.2.4 Object Detection with TensorFlow, ImageAI, Mask RNN, PixelLib, Gluon 354<br/><br/>TensorFlow Object Detection 354<br/><br/>ImageAI Object Detection 355<br/><br/>MaskRCNN Object Detection 357<br/><br/>Gluon Object Detection 363<br/><br/>7.2.5 Object Detection with Colab OpenCV 364<br/><br/>7.3 Object Detections with Custom Trained Models 369<br/><br/>7.3.1 OpenCV 369<br/><br/>Step 1 369<br/><br/>Step 2 369<br/><br/>Step 3 369<br/><br/>Step 4 370<br/><br/>Step 5 371<br/><br/>7.3.2 YOLO 372<br/><br/>Step 1 372<br/><br/>Step 2 372<br/><br/>Step 3 373<br/><br/>Step 4 375<br/><br/>Step 5 375<br/><br/>7.3.3 TensorFlow, Gluon, and ImageAI 376<br/><br/>TensorFlow 376<br/><br/>Gluon 376<br/><br/>ImageAI 376<br/><br/>7.4 Object Tracking 377<br/><br/>7.4.1 Object Size and Distance Detection 377<br/><br/>7.4.2 Object Tracking with OpenCV 382<br/><br/>Single Object Tracking with OpenCV 382<br/><br/>Multiple Object Tracking with OpenCV 384<br/><br/>7.4.2 Object Tracking with YOLOv4 and DeepSORT 386<br/><br/>7.4.3 Object Tracking with Gluon 389<br/><br/>7.5 Image Segmentation 389<br/><br/>7.5.1 Image Semantic Segmentation and Image Instance Segmentation 390<br/><br/>PexelLib 390<br/><br/>Detectron2 394<br/><br/>Gluon CV 394<br/><br/>7.5.2 K-means Clustering Image Segmentation 394<br/><br/>7.5.3 Watershed Image Segmentation 396<br/><br/>7.6 Background Removal 405<br/><br/>7.6.1 Background Removal with OpenCV 405<br/><br/>7.6.2 Background Removal with PaddlePaddle 423<br/><br/>7.6.3 Background Removal with PixelLib 425<br/><br/>7.7 Depth Estimation 426<br/><br/>7.7.1 Depth Estimation from a Single Image 426<br/><br/>7.7.2 Depth Estimation from Stereo Images 428<br/><br/>7.8 Augmented Reality 430<br/><br/>7.9 Summary 431<br/><br/>7.10 Chapter Review Questions 431<br/><br/>Chapter 8 Pose Detection 433<br/><br/>8.1 Introduction 433<br/><br/>8.2 Hand Gesture Detection 434<br/><br/>8.2.1 OpenCV 434<br/><br/>8.2.2 TensorFlow.js 452<br/><br/>8.3 Sign Language Detection 453<br/><br/>8.4 Body Pose Detection 454<br/><br/>8.4.1 OpenPose 454<br/><br/>8.4.2 OpenCV 455<br/><br/>8.4.3 Gluon 455<br/><br/>8.4.4 PoseNet 456<br/><br/>8.4.5 ML5JS 457<br/><br/>8.4.6 MediaPipe 459<br/><br/>8.5 Human Activity Recognition 461<br/><br/>ActionAI 461<br/><br/>Gluon Action Detection 461<br/><br/>Accelerometer Data HAR 461<br/><br/>8.6 Summary 464<br/><br/>8.7 Chapter Review Questions 464<br/><br/>Chapter 9 GAN and Neural-Style Transfer 465<br/><br/>9.1 Introduction 465<br/><br/>9.2 Generative Adversarial Network 466<br/><br/>9.2.1 CycleGAN 467<br/><br/>9.2.2 StyleGAN 469<br/><br/>9.2.3 Pix2Pix 474<br/><br/>9.2.4 PULSE 475<br/><br/>9.2.5 Image Super-Resolution 475<br/><br/>9.2.6 2D to 3D 478<br/><br/>9.3 Neural-Style Transfer 479<br/><br/>9.4 Adversarial Machine Learning 484<br/><br/>9.5 Music Generation 486<br/><br/>9.6 Summary 489<br/><br/>9.7 Chapter Review Questions 489<br/><br/>Chapter 10 Natural Language Processing 491<br/><br/>10.1 Introduction 491<br/><br/>10.1.1 Natural Language Toolkit 492<br/><br/>10.1.2 spaCy 493<br/><br/>10.1.3 Gensim 493<br/><br/>10.1.4 TextBlob 494<br/><br/>10.2 Text Summarization 494<br/><br/>10.3 Text Sentiment Analysis 508<br/><br/>10.4 Text/Poem Generation 510<br/><br/>10.5.1 Text to Speech 515<br/><br/>10.5.2 Speech to Text 517<br/><br/>10.6 Machine Translation 522<br/><br/>10.7 Optical Character Recognition 523<br/><br/>10.8 QR Code 524<br/><br/>10.9 PDF and DOCX Files 527<br/><br/>10.10 Chatbots and Question Answering 530<br/><br/>10.10.1 ChatterBot 530<br/><br/>10.10.2 Transformers 532<br/><br/>10.10.3 J.A.R.V.I.S. 534<br/><br/>10.10.4 Chatbot Resources and Examples 540<br/><br/>10.11 Summary 541<br/><br/>10.12 Chapter Review Questions 542<br/><br/>Chapter 11 Data Analysis 543<br/><br/>11.1 Introduction 543<br/><br/>11.2 Regression 544<br/><br/>11.2.1 Linear Regression 545<br/><br/>11.2.2 Support Vector Regression 547<br/><br/>11.2.3 Partial Least Squares Regression 554<br/><br/>11.3 Time-Series Analysis 563<br/><br/>11.3.1 Stock Price Data 563<br/><br/>11.3.2 Stock Price Prediction 565<br/><br/>Streamlit Stock Price Web App 569<br/><br/>11.3.4 Seasonal Trend Analysis 573<br/><br/>11.3.5 Sound Analysis 576<br/><br/>11.4 Predictive Maintenance Analysis 580<br/><br/>11.5 Anomaly Detection and Fraud Detection 584<br/><br/>11.5.1 Numenta Anomaly Detection 584<br/><br/>11.5.2 Textile Defect Detection 584<br/><br/>11.5.3 Healthcare Fraud Detection 584<br/><br/>11.5.4 Santander Customer Transaction Prediction 584<br/><br/>11.6 COVID-19 Data Visualization and Analysis 585<br/><br/>11.7 KerasClassifier and KerasRegressor 588<br/><br/>11.7.1 KerasClassifier 589<br/><br/>11.7.2 KerasRegressor 593<br/><br/>11.8 SQL and NoSQL Databases 599<br/><br/>11.9 Immutable Database 608<br/><br/>11.9.1 Immudb 608<br/><br/>11.9.2 Amazon Quantum Ledger Database 609<br/><br/>11.10 Summary 610<br/><br/>11.11 Chapter Review Questions 610<br/><br/>Chapter 12 Advanced AI Computing 613<br/><br/>12.1 Introduction 613<br/><br/>12.2 AI with Graphics Processing Unit 614<br/><br/>12.3 AI with Tensor Processing Unit 618<br/><br/>12.4 AI with Intelligence Processing Unit 621<br/><br/>12.5 AI with Cloud Computing 622<br/><br/>12.5.1 Amazon AWS 623<br/><br/>12.5.2 Microsoft Azure 624<br/><br/>12.5.3 Google Cloud Platform 625<br/><br/>12.5.4 Comparison of AWS, Azure, and GCP 625<br/><br/>12.6 Web-Based AI 629<br/><br/>12.6.1 Django 629<br/><br/>12.6.2 Flask 629<br/><br/>12.6.3 Streamlit 634<br/><br/>12.6.4 Other Libraries 634<br/><br/>12.7 Packaging the Code 635<br/><br/>Pyinstaller 635<br/><br/>Nbconvert 635<br/><br/>Py2Exe 636<br/><br/>Py2app 636<br/><br/>Auto-Py-To-Exe 636<br/><br/>cx_Freeze 637<br/><br/>Cython 638<br/><br/>Kubernetes 639<br/><br/>Docker 642<br/><br/>PIP 647<br/><br/>12.8 AI with Edge Computing 647<br/><br/>12.8.1 Google Coral 647<br/><br/>12.8.2 TinyML 648<br/><br/>12.8.3 Raspberry Pi 649<br/><br/>12.9 Create a Mobile AI App 651<br/><br/>12.10 Quantum AI 653<br/><br/>12.11 Summary 657<br/><br/>12.12 Chapter Review Questions 657
520 ## - SUMMARY, ETC.
Summary, etc. In Practical Artificial Intelligence Programming with Python: From Zero to Hero, veteran educator and photophysicist Dr. Perry Xiao delivers a thorough introduction to one of the most exciting areas of computer science in modern history. The book demystifies artificial intelligence and teaches readers its fundamentals from scratch in simple and plain language and with illustrative code examples.<br/><br/>Divided into three parts, the author explains artificial intelligence generally, machine learning, and deep learning. It tackles a wide variety of useful topics, from classification and regression in machine learning to generative adversarial networks. He also includes:<br/><br/>Fulsome introductions to MATLAB, Python, AI, machine learning, and deep learning<br/>Expansive discussions on supervised and unsupervised machine learning, as well as semi-supervised learning<br/>Practical AI and Python “cheat sheet” quick references<br/>This hands-on AI programming guide is perfect for anyone with a basic knowledge of programming—including familiarity with variables, arrays, loops, if-else statements, and file input and output—who seeks to understand foundational concepts in AI and AI development.
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Books
952 ## - LOCATION AND ITEM INFORMATION (KOHA)
-- 6196
952 ## - LOCATION AND ITEM INFORMATION (KOHA)
-- 6197
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Collection code Home library Current library Shelving location Date acquired Source of acquisition Cost, normal purchase price Inventory number Total Checkouts Total Renewals Full call number Barcode Checked out Date last seen Date last checked out Cost, replacement price Price effective from Currency Koha item type
    Dewey Decimal Classification     Non-fiction IIITDM Kurnool IIITDM Kurnool General Stacks 22.02.2024 Technical Bureau India 39.95 TB3239 DT 9/1/2024 5 2 006.3 XIA 0005355 17.01.2025 19.12.2024 19.12.2024 39.95 22.02.2024 USD Books
    Dewey Decimal Classification     Non-fiction IIITDM Kurnool IIITDM Kurnool General Stacks 22.02.2024 Technical Bureau India 39.95 TB3239 DT 9/1/2024 4 3 006.3 XIA 0005356 21.01.2025 23.12.2024 23.12.2024 39.95 22.02.2024 USD Books
LIBRARY HOURS
Mon - Sat : 9:00 AM - 5.30 PM
Library will remain closed on public holidays
Contact Us

Librarian
Central Libray
Indian Institute of Information Technology Design and Manufacturing Kurnool
Andhra Pradesh - 518 007

Library Email ID: library@iiitk.ac.in

Copyright @ Central Library | IIITDM Kurnool

Powered by Koha