Introduction to the Design and Analysis of Algorithms (Record no. 2260)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 07100nam a22001817a 4500 |
005 - DATE AND TIME OF LATEST TRANSACTION | |
control field | 20240612145919.0 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION | |
fixed length control field | 240612b |||||||| |||| 00| 0 eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 9789332585485 |
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER | |
Classification number | 005.1 |
Item number | LEV |
100 ## - MAIN ENTRY--PERSONAL NAME | |
Personal name | Anany V. Levitin |
245 ## - TITLE STATEMENT | |
Title | Introduction to the Design and Analysis of Algorithms |
Statement of responsibility, etc. | Anany V. Levitin |
250 ## - EDITION STATEMENT | |
Edition statement | 3ND |
260 ## - PUBLICATION, DISTRIBUTION, ETC. | |
Place of publication, distribution, etc. | Chennai |
Name of publisher, distributor, etc. | Pearson |
Date of publication, distribution, etc. | 2017 |
300 ## - PHYSICAL DESCRIPTION | |
Page number | 589p |
505 ## - FORMATTED CONTENTS NOTE | |
Title | Table of Contents<br/>New to the Third Edition<br/>Preface<br/>Introduction<br/>1.1 What Is an Algorithm?<br/>Exercises 1.1<br/>1.2 Fundamentals of Algorithmic Problem Solving<br/>Understanding the Problem<br/>Ascertaining the Capabilities of the Computational Device<br/>Choosing between Exact and Approximate Problem Solving<br/>Algorithm Design Techniques<br/>Designing an Algorithm and Data Structures<br/>Methods of Specifying an Algorithm<br/>Proving an Algorithm’s Correctness<br/>Analyzing an Algorithm<br/>Coding an Algorithm<br/>Exercises 1.2<br/>1.3 Important Problem Types<br/>Sorting<br/>Searching<br/>String Processing<br/>Graph Problems<br/>Combinatorial Problems<br/>Geometric Problems<br/>Numerical Problems<br/>Exercises 1.3<br/>1.4 Fundamental Data Structures<br/>Linear Data Structures<br/>Graphs<br/>Trees<br/>Sets and Dictionaries<br/>Exercises 1.4<br/>Summary<br/>Fundamentals of the Analysis of Algorithm Efficiency<br/>2.1 The Analysis Framework<br/>Measuring an Input’s Size<br/>Units for Measuring Running Time<br/>Orders of Growth<br/>Worst-Case, Best-Case, and Average-Case Efficiencies<br/>Recapitulation of the Analysis Framework<br/>Exercises 2.1<br/>2.2 Asymptotic Notations and Basic Efficiency Classes<br/>Informal Introduction<br/>O-notation<br/>-notation<br/>-notation<br/>Useful Property Involving the Asymptotic Notations<br/>Using Limits for Comparing Orders of Growth<br/>Basic Efficiency Classes<br/>Exercises 2.2<br/>2.3 Mathematical Analysis of Nonrecursive Algorithms<br/>Exercises 2.3<br/>2.4 Mathematical Analysis of Recursive Algorithms<br/>Exercises 2.4<br/>2.5 Example: Computing the nth Fibonacci Number<br/>Exercises 2.5<br/>2.6 Empirical Analysis of Algorithms<br/>Exercises 2.6<br/>2.7 Algorithm Visualization<br/>Summary<br/>Brute Force and Exhaustive Search<br/>3.1 Selection Sort and Bubble Sort<br/>Selection Sort<br/>Bubble Sort<br/>Exercises 3.1<br/>3.2 Sequential Search and Brute-Force String Matching<br/>Sequential Search<br/>Brute-Force String Matching<br/>Exercises 3.2<br/>3.3 Closest-Pair and Convex-Hull Problems by Brute Force<br/>Closest-Pair Problem<br/>Convex-Hull Problem<br/>Exercises 3.3<br/>3.4 Exhaustive Search<br/>Traveling Salesman Problem<br/>Knapsack Problem<br/>Assignment Problem<br/>Exercises 3.4<br/>3.5 Depth-First Search and Breadth-First Search<br/>Depth-First Search<br/>Breadth-First Search<br/>Exercises 3.5<br/>Summary<br/>Decrease-and-Conquer<br/>4.1 Insertion Sort<br/>Exercises 4.1<br/>4.2 Topological Sorting<br/>Exercises 4.2<br/>4.3 Algorithms for Generating Combinatorial Objects<br/>Generating Permutations<br/>Generating Subsets<br/>Exercises 4.3<br/>4.4 Decrease-by-a-Constant-Factor Algorithms<br/>Binary Search<br/>Fake-Coin Problem<br/>Russian Peasant Multiplication<br/>Josephus Problem<br/>Exercises 4.4<br/>4.5 Variable-Size-Decrease Algorithms<br/>Computing a Median and the Selection Problem<br/>Interpolation Search<br/>Searching and Insertion in a Binary Search Tree<br/>The Game of Nim<br/>Exercises 4.5<br/>Summary<br/>Divide-and-Conquer<br/>5.1 Mergesort<br/>Exercises 5.1<br/>5.2 Quicksort<br/>Exercises 5.2<br/>5.3 Binary Tree Traversals and Related Properties<br/>Exercises 5.3<br/>5.4 Multiplication of Large Integers and Strassen’s Matrix Multiplication<br/>Multiplication of Large Integers<br/>Strassen’s Matrix Multiplication<br/>Exercises 5.4<br/>5.5 The Closest-Pair and Convex-Hull Problems<br/>by Divide-and-Conquer<br/>The Closest-Pair Problem<br/>Convex-Hull Problem<br/>Exercises 5.5<br/>Summary<br/>Transform-and-Conquer<br/>6.1 Presorting<br/>Exercises 6.1<br/>6.2 Gaussian Elimination<br/>LU Decomposition<br/>Computing a Matrix Inverse<br/>Computing a Determinant<br/>Exercises 6.2<br/>6.3 Balanced Search Trees<br/>AVL Trees<br/>2-3 Trees<br/>Exercises 6.3<br/>6.4 Heaps and Heapsort<br/>Notion of the Heap<br/>Heapsort<br/>Exercises 6.4<br/>6.5 Horner’s Rule and Binary Exponentiation<br/>Horner’s Rule<br/>Binary Exponentiation<br/>Exercises 6.5<br/>6.6 Problem Reduction<br/>Computing the Least Common Multiple<br/>Counting Paths in a Graph<br/>Reduction of Optimization Problems<br/>Linear Programming<br/>Reduction to Graph Problems<br/>Exercises 6.6<br/>Summary<br/>Space and Time Trade-Offs<br/>7.1 Sorting by Counting<br/>Exercises 7.1<br/>7.2 Input Enhancement in String Matching<br/>Horspool’s Algorithm<br/>Boyer-Moore Algorithm<br/>Exercises 7.2<br/>7.3 Hashing<br/>Open Hashing (Separate Chaining)<br/>Closed Hashing (Open Addressing)<br/>Exercises 7.3<br/>7.4 B-Trees<br/>Exercises 7.4<br/>Summary<br/>Dynamic Programming<br/>8.1 Three Basic Examples<br/>Exercises 8.1<br/>8.2 The Knapsack Problem and Memory Functions<br/>Memory Functions<br/>Exercises 8.2<br/>8.3 Optimal Binary Search Trees<br/>Exercises 8.3<br/>8.4 Warshall’s and Floyd’s Algorithms<br/>Warshall’s Algorithm<br/>Floyd’s Algorithm for the All-Pairs Shortest-Paths Problem<br/>Exercises 8.4<br/>Summary<br/>Greedy Technique<br/>9.1 Prim’s Algorithm<br/>Exercises 9.1<br/>9.2 Kruskal’s Algorithm<br/>Disjoint Subsets and Union-Find Algorithms<br/>Exercises 9.2<br/>9.3 Dijkstra’s Algorithm<br/>Exercises 9.3<br/>9.4 Huffman Trees and Codes<br/>Exercises 9.4<br/>Summary<br/>Iterative Improvement<br/>10.1 The Simplex Method<br/>Geometric Interpretation of Linear Programming<br/>An Outline of the Simplex Method<br/>Further Notes on the Simplex Method<br/>Exercises 10.1<br/>10.2 The Maximum-Flow Problem<br/>Exercises 10.2<br/>10.3 Maximum Matching in Bipartite Graphs<br/>Exercises 10.3<br/>10.4 The Stable Marriage Problem<br/>Exercises 10.4<br/>Summary<br/>Limitations of Algorithm Power<br/>11.1 Lower-Bound Arguments<br/>Trivial Lower Bounds<br/>Information-Theoretic Arguments<br/>Adversary Arguments<br/>Problem Reduction<br/>Exercises 11.1<br/>11.2 Decision Trees<br/>Decision Trees for Sorting<br/>Decision Trees for Searching a Sorted Array<br/>Exercises 11.2<br/>11.3 P, NP, and NP-Complete Problems<br/>P and NP Problems<br/>NP-Complete Problems<br/>Exercises 11.3<br/>11.4 Challenges of Numerical Algorithms<br/>Exercises 11.4<br/>Summary<br/>Coping with the Limitations of Algorithm Power<br/>12.1 Backtracking<br/>n-Queens Problem<br/>Hamiltonian Circuit Problem<br/>Subset-Sum Problem<br/>General Remarks<br/>Exercises 12.1<br/>12.2 Branch-and-Bound<br/>Assignment Problem<br/>Knapsack Problem<br/>Traveling Salesman Problem<br/>Exercises 12.2<br/>12.3 Approximation Algorithms for NP-Hard Problems<br/>Approximation Algorithms for the Traveling Salesman Problem<br/>Approximation Algorithms for the Knapsack Problem<br/>Exercises 12.3<br/>12.4 Algorithms for Solving Nonlinear Equations<br/>Bisection Method<br/>Method of False Position<br/>Newton’s Method<br/>Exercises 12.4<br/>Summary<br/>Epilogue |
520 ## - SUMMARY, ETC. | |
Summary, etc. | Based on a new classification of algorithm design techniques and a clear delineation of analysis methods, Introduction to the Design and Analysis of Algorithms, 2e presents the subject in a truly innovative manner. Written in a reader-friendly style, the book encourages broad problem-solving skills while thoroughly covering the material required for introductory algorithms. The author emphasizes conceptual understanding before the introduction of the formal treatment of each technique. Popular puzzles are used to motivate readers' interest and strengthen their skills in algorithmic problem solving. |
942 ## - ADDED ENTRY ELEMENTS (KOHA) | |
Source of classification or shelving scheme | Dewey Decimal Classification |
Koha item type | Books |
952 ## - LOCATION AND ITEM INFORMATION (KOHA) | |
-- | 6553 |
Withdrawn status | Lost status | Source of classification or shelving scheme | Damaged status | Not for loan | Collection code | Home library | Current library | Shelving location | Date acquired | Source of acquisition | Cost, normal purchase price | Inventory number | Total Checkouts | Full call number | Barcode | Date last seen | Cost, replacement price | Price effective from | Currency | Koha item type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dewey Decimal Classification | Non-fiction | IIITDM Kurnool | IIITDM Kurnool | COMPUTER SCIENCE ENGINEERING | 12.06.2024 | Technical Bureau India | 900.00 | TB619 DT 6/6/2024 | 005.1 LEV | 0005550 | 12.06.2024 | 900.00 | 12.06.2024 | INR | Books |