Hands-On Exploratory Data Analysis with Python: (Record no. 2342)

MARC details
000 -LEADER
fixed length control field 04435nam a22001817a 4500
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240723121523.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 240723b |||||||| |||| 00| 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781789537253
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 005.133
Item number SUR
100 ## - MAIN ENTRY--PERSONAL NAME
Personal name Mukhiya, Suresh Kumar
245 ## - TITLE STATEMENT
Title Hands-On Exploratory Data Analysis with Python:
Remainder of title Perform EDA techniques to understand, summarize, and investigate your data
Statement of responsibility, etc. Usman Ahmed , Suresh Kumar Mukhiya
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. UK
Name of publisher, distributor, etc. Packt>
Date of publication, distribution, etc. 2020
300 ## - PHYSICAL DESCRIPTION
Page number 336
505 ## - FORMATTED CONTENTS NOTE
Title 1. Section 1: The Fundamentals of EDA<br/>Section 1: The Fundamentals of EDA<br/>2. Exploratory Data Analysis Fundamentals<br/>Exploratory Data Analysis Fundamentals<br/>Understanding data science<br/>The significance of EDA<br/>Making sense of data<br/>Comparing EDA with classical and Bayesian analysis<br/>Software tools available for EDA<br/>Getting started with EDA<br/>Summary<br/>Further reading<br/>3. Visual Aids for EDA<br/>Visual Aids for EDA<br/>Technical requirements<br/>Line chart<br/>Bar charts<br/>Scatter plot<br/>Area plot and stacked plot<br/>Pie chart<br/>Table chart<br/>Polar chart<br/>Histogram<br/>Lollipop chart<br/>Choosing the best chart<br/>Other libraries to explore<br/>Summary<br/>Further reading<br/>4. EDA with Personal Email<br/>EDA with Personal Email<br/>Technical requirements<br/>Loading the dataset<br/>Data transformation<br/>Data analysis<br/>Summary<br/>Further reading<br/>5. Data Transformation<br/>Data Transformation<br/>Technical requirements<br/>Background<br/>Merging database-style dataframes<br/>Transformation techniques<br/>Benefits of data transformation<br/>Summary<br/>Further reading<br/>6. Section 2: Descriptive Statistics<br/>Section 2: Descriptive Statistics<br/>7. Descriptive Statistics<br/>Descriptive Statistics<br/>Technical requirements<br/>Understanding statistics<br/>Measures of central tendency<br/>Measures of dispersion<br/>Summary<br/>Further reading<br/>8. Grouping Datasets<br/>Grouping Datasets<br/>Technical requirements<br/>Understanding groupby()<br/>Groupby mechanics<br/>Data aggregation<br/>Pivot tables and cross-tabulations<br/>Summary<br/>Further reading<br/>9. Correlation<br/>Correlation<br/>Technical requirements<br/>Introducing correlation<br/>Types of analysis<br/>Discussing multivariate analysis using the Titanic dataset<br/>Outlining Simpson's paradox<br/>Correlation does not imply causation<br/>Summary<br/>Further reading<br/>10. Time Series Analysis<br/>Time Series Analysis<br/>Technical requirements<br/>Understanding the time series dataset<br/>TSA with Open Power System Data<br/>Summary<br/>Further reading<br/>11. Section 3: Model Development and Evaluation<br/>Section 3: Model Development and Evaluation<br/>12. Hypothesis Testing and Regression<br/>Hypothesis Testing and Regression<br/>Technical requirements<br/>Hypothesis testing<br/>p-hacking<br/>Understanding regression<br/>Model development and evaluation<br/>Summary<br/>Further reading<br/>13. Model Development and Evaluation<br/>Model Development and Evaluation<br/>Technical requirements<br/>Types of machine learning<br/>Understanding supervised learning<br/>Understanding unsupervised learning<br/>Understanding reinforcement learning<br/>Unified machine learning workflow<br/>Summary<br/>Further reading<br/>14. EDA on Wine Quality Data Analysis<br/>EDA on Wine Quality Data Analysis<br/>Technical requirements<br/>Disclosing the wine quality dataset<br/>Analyzing red wine<br/>Analyzing white wine<br/>Model development and evaluation<br/>Summary<br/>Further reading<br/>
520 ## - SUMMARY, ETC.
Summary, etc. Exploratory Data Analysis (EDA) is an approach to data analysis that involves the application of diverse techniques to gain insights into a dataset. This book will help you gain practical knowledge of the main pillars of EDA - data cleaning, data preparation, data exploration, and data visualization. You’ll start by performing EDA using open source datasets and perform simple to advanced analyses to turn data into meaningful insights. You’ll then learn various descriptive statistical techniques to describe the basic characteristics of data and progress to performing EDA on time-series data. As you advance, you’ll learn how to implement EDA techniques for model development and evaluation and build predictive models to visualize results. Using Python for data analysis, you’ll work with real-world datasets, understand data, summarize its characteristics, and visualize it for business intelligence. By the end of this EDA book, you’ll have developed the skills required to carry out a preliminary investigation on any dataset, yield insights into data, present your results with visual aids, and build a model that correctly predicts future outcomes.
700 ## - ADDED ENTRY--PERSONAL NAME
Personal name Usman Ahmed
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Books
952 ## - LOCATION AND ITEM INFORMATION (KOHA)
-- 6847
952 ## - LOCATION AND ITEM INFORMATION (KOHA)
-- 6848
952 ## - LOCATION AND ITEM INFORMATION (KOHA)
-- 6849
952 ## - LOCATION AND ITEM INFORMATION (KOHA)
-- 6850
952 ## - LOCATION AND ITEM INFORMATION (KOHA)
-- 6851
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Collection code Home library Current library Shelving location Date acquired Source of acquisition Cost, normal purchase price Inventory number Total Checkouts Full call number Barcode Date last seen Cost, replacement price Price effective from Currency Koha item type Total Renewals Date last checked out
    Dewey Decimal Classification     Non-fiction IIITDM Kurnool IIITDM Kurnool COMPUTER SCIENCE ENGINEERING 23.07.2024 Technical Bureau India 3299.00 TB889 DT 6/7/2024   005.133 SUR 0005844 23.07.2024 3299.00 23.07.2024 INR Books    
    Dewey Decimal Classification     Non-fiction IIITDM Kurnool IIITDM Kurnool COMPUTER SCIENCE ENGINEERING 23.07.2024 Technical Bureau India 3299.00 TB889 DT 6/7/2024 1 005.133 SUR 0005845 09.09.2024 3299.00 23.07.2024 INR Books 1 30.07.2024
    Dewey Decimal Classification     Non-fiction IIITDM Kurnool IIITDM Kurnool COMPUTER SCIENCE ENGINEERING 23.07.2024 Technical Bureau India 3299.00 TB889 DT 6/7/2024   005.133 SUR 0005846 23.07.2024 3299.00 23.07.2024 INR Books    
    Dewey Decimal Classification     Non-fiction IIITDM Kurnool IIITDM Kurnool COMPUTER SCIENCE ENGINEERING 23.07.2024 Technical Bureau India 3299.00 TB889 DT 6-7-2024 1 005.133 SUR 0005847 23.09.2024 3299.00 23.07.2024 INR Books 1 02.08.2024
    Dewey Decimal Classification   Not For Loan Non-fiction IIITDM Kurnool IIITDM Kurnool Reference 23.07.2024 Technical Bureau India 3299.00 TB889 DT 6-7-2024   005.133 SUR 0005848 23.07.2024 3299.00 23.07.2024 INR Reference    
LIBRARY HOURS
Mon - Sat : 9:00 AM - 5.30 PM
Library will remain closed on public holidays
Contact Us

Librarian
Central Libray
Indian Institute of Information Technology Design and Manufacturing Kurnool
Andhra Pradesh - 518 007

Library Email ID: library@iiitk.ac.in

Copyright @ Central Library | IIITDM Kurnool

Powered by Koha