Data Analysis with R (Record no. 2343)

MARC details
000 -LEADER
fixed length control field 05422nam a22001817a 4500
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240723123350.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 240723b |||||||| |||| 00| 0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781788393720
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 001.422
Item number FIS
100 ## - MAIN ENTRY--PERSONAL NAME
Personal name Fischetti, Anthony
245 ## - TITLE STATEMENT
Title Data Analysis with R
Remainder of title A comprehensive guide to manipulating, analyzing, and visualizing data in R
Statement of responsibility, etc. Anthony Fischetti
250 ## - EDITION STATEMENT
Edition statement Second Edition
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. UK
Name of publisher, distributor, etc. Packt>
Date of publication, distribution, etc. 2018
300 ## - PHYSICAL DESCRIPTION
Page number 553
505 ## - FORMATTED CONTENTS NOTE
Title 1. RefresheR<br/>RefresheR<br/>Navigating the basics<br/>Getting help in R<br/>Vectors<br/>Functions<br/>Matrices<br/>Loading data into R<br/>Working with packages<br/>Exercises<br/>Summary<br/>2. The Shape of Data<br/>The Shape of Data<br/>Univariate data<br/>Frequency distributions<br/>Central tendency<br/>Spread<br/>Populations, samples, and estimation<br/>Probability distributions<br/>Visualization methods<br/>Exercises<br/>Summary<br/>3. Describing Relationships<br/>Describing Relationships<br/>Multivariate data<br/>Relationships between a categorical and continuous variable<br/>Relationships between two categorical variables<br/>The relationship between two continuous variables<br/>Visualization methods<br/>Exercises<br/>Summary<br/>4. Probability<br/>Probability<br/>Basic probability<br/>A tale of two interpretations<br/>Sampling from distributions<br/>The normal distribution<br/>Exercises<br/>Summary<br/>5. Using Data To Reason About The World<br/>Using Data To Reason About The World<br/>Estimating means<br/>The sampling distribution<br/>Interval estimation<br/>Smaller samples<br/>Exercises<br/>Summary<br/>6. Testing Hypotheses<br/>Testing Hypotheses<br/>The null hypothesis significance testing framework<br/>Testing the mean of one sample<br/>Testing two means<br/>Testing more than two means<br/>Testing independence of proportions<br/>What if my assumptions are unfounded?<br/>Exercises<br/>Summary<br/>7. Bayesian Methods<br/>Bayesian Methods<br/>The big idea behind Bayesian analysis<br/>Choosing a prior<br/>Who cares about coin flips<br/>Enter MCMC – stage left<br/>Using JAGS and runjags<br/>Fitting distributions the Bayesian way<br/>The Bayesian independent samples t-test<br/>Exercises<br/>Summary<br/>8. The Bootstrap<br/>The Bootstrap<br/>What's... uhhh... the deal with the bootstrap?<br/>Performing the bootstrap in R (more elegantly)<br/>Confidence intervals<br/>A one-sample test of means<br/>Bootstrapping statistics other than the mean<br/>Busting bootstrap myths<br/>Exercises<br/>Summary<br/>9. Predicting Continuous Variables<br/>Predicting Continuous Variables<br/>Linear models<br/>Simple linear regression<br/>Simple linear regression with a binary predictor<br/>Multiple regression<br/>Regression with a non-binary predictor<br/>Kitchen sink regression<br/>The bias-variance trade-off<br/>Linear regression diagnostics<br/>Advanced topics<br/>Exercises<br/>Summary<br/>10. Predicting Categorical Variables<br/>Predicting Categorical Variables<br/>k-Nearest neighbors<br/>Logistic regression<br/>Decision trees<br/>Random forests<br/>Choosing a classifier<br/>Exercises<br/>Summary<br/>11. Predicting Changes with Time<br/>Predicting Changes with Time<br/>What is a time series?<br/>What is forecasting?<br/>Creating and plotting time series<br/>Components of time series<br/>Time series decomposition<br/>White noise<br/>Autocorrelation<br/>Smoothing<br/>ETS and the state space model<br/>Interventions for improvement<br/>What we didn't cover<br/>Citations for the climate change data<br/>Exercises<br/>Summary<br/>12. Sources of Data<br/>Sources of Data<br/>Relational databases<br/>Using JSON<br/>XML<br/>Other data formats<br/>Online repositories<br/>Exercises<br/>Summary<br/>13. Dealing with Missing Data<br/>Dealing with Missing Data<br/>Analysis with missing data<br/>Visualizing missing data<br/>Types of missing data<br/>Unsophisticated methods for dealing with missing data<br/>So how does mice come up with the imputed values?<br/>Exercises<br/>Summary<br/>14. Dealing with Messy Data<br/>Dealing with Messy Data<br/>Checking unsanitized data<br/>Regular expressions<br/>Other tools for messy data<br/>Exercises<br/>Summary<br/>15. Dealing with Large Data<br/>Dealing with Large Data<br/>Wait to optimize<br/>Using a bigger and faster machine<br/>Be smart about your code<br/>Using optimized packages<br/>Using another R implementation<br/>Using parallelization<br/>Using Rcpp<br/>Being smarter about your code<br/>Exercises<br/>Summary<br/>16. Working with Popular R Packages<br/>Working with Popular R Packages<br/>The data.table package<br/>Using dplyr and tidyr to manipulate data<br/>Functional programming as a main tidyverse principle<br/>Reshaping data with tidyr<br/>Exercises<br/>Summary<br/>17. Reproducibility and Best Practices
520 ## - SUMMARY, ETC.
Summary, etc. Frequently the tool of choice for academics, R has spread deep into the private sector and can be found in the production pipelines at some of the most advanced and successful enterprises. The power and domain-specificity of R allows the user to express complex analytics easily, quickly, and succinctly. Starting with the basics of R and statistical reasoning, this book dives into advanced predictive analytics, showing how to apply those techniques to real-world data though with real-world examples. Packed with engaging problems and exercises, this book begins with a review of R and its syntax with packages like Rcpp, ggplot2, and dplyr. From there, get to grips with the fundamentals of applied statistics and build on this knowledge to perform sophisticated and powerful analytics. Solve the difficulties relating to performing data analysis in practice and find solutions to working with messy data, large data, communicating results, and facilitating reproducibility. This book is engineered to be an invaluable resource through many stages of anyone’s career as a data analyst.
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Dewey Decimal Classification
Koha item type Books
952 ## - LOCATION AND ITEM INFORMATION (KOHA)
-- 6852
952 ## - LOCATION AND ITEM INFORMATION (KOHA)
-- 6853
952 ## - LOCATION AND ITEM INFORMATION (KOHA)
-- 6854
952 ## - LOCATION AND ITEM INFORMATION (KOHA)
-- 6855
952 ## - LOCATION AND ITEM INFORMATION (KOHA)
-- 6856
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Collection code Home library Current library Shelving location Date acquired Source of acquisition Cost, normal purchase price Inventory number Total Checkouts Full call number Barcode Date last seen Cost, replacement price Price effective from Currency Koha item type
    Dewey Decimal Classification     Non-fiction IIITDM Kurnool IIITDM Kurnool COMPUTER SCIENCE ENGINEERING 23.07.2024 Technical Bureau India 3299.00 TB889 DT 6-7-2024   001.422 FIS 0005839 23.07.2024 3299.00 23.07.2024 INR Books
    Dewey Decimal Classification     Non-fiction IIITDM Kurnool IIITDM Kurnool COMPUTER SCIENCE ENGINEERING 23.07.2024 Technical Bureau India 3299.00 TB889 DT 6-7-2024   001.422 FIS 0005840 23.07.2024 3299.00 23.07.2024 INR Books
    Dewey Decimal Classification     Non-fiction IIITDM Kurnool IIITDM Kurnool COMPUTER SCIENCE ENGINEERING 23.07.2024 Technical Bureau India 3299.00 TB889 DT 6-7-2024   001.422 FIS 0005841 23.07.2024 3299.00 23.07.2024 INR Books
    Dewey Decimal Classification     Non-fiction IIITDM Kurnool IIITDM Kurnool COMPUTER SCIENCE ENGINEERING 23.07.2024 Technical Bureau India 3299.00 TB889 DT 6-7-2024   001.422 FIS 0005842 23.07.2024 3299.00 23.07.2024 INR Books
    Dewey Decimal Classification   Not For Loan Non-fiction IIITDM Kurnool IIITDM Kurnool Reference 23.07.2024 Technical Bureau India 3299.00 TB889 DT 6-7-2024   001.422 FIS 0005843 23.07.2024 3299.00 23.07.2024 INR Reference
LIBRARY HOURS
Mon - Sat : 9:00 AM - 5.30 PM
Library will remain closed on public holidays
Contact Us

Librarian
Central Libray
Indian Institute of Information Technology Design and Manufacturing Kurnool
Andhra Pradesh - 518 007

Library Email ID: library@iiitk.ac.in

Copyright @ Central Library | IIITDM Kurnool

Powered by Koha