MARC details
000 -LEADER |
fixed length control field |
08460nam a22001817a 4500 |
005 - DATE AND TIME OF LATEST TRANSACTION |
control field |
20240911095956.0 |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
240911b |||||||| |||| 00| 0 eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9789354642210 |
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER |
Classification number |
621.402 |
Item number |
BOR |
100 ## - MAIN ENTRY--PERSONAL NAME |
Personal name |
Borgnakke,Claus |
245 ## - TITLE STATEMENT |
Title |
Fundamentals of Thermodynamics |
Statement of responsibility, etc. |
Claus Borgnakke, Richard E. Sonntag, Souvik Bhattacharyya, Dr. Manoj Kumar Soni |
250 ## - EDITION STATEMENT |
Edition statement |
10 |
260 ## - PUBLICATION, DISTRIBUTION, ETC. |
Place of publication, distribution, etc. |
New Delhi: |
Name of publisher, distributor, etc. |
Wiley India Pvt. Ltd, |
Date of publication, distribution, etc. |
2024. |
300 ## - PHYSICAL DESCRIPTION |
Page number |
xxiv, 771p |
505 ## - FORMATTED CONTENTS NOTE |
Title |
1 Introduction and Preliminaries<br/>1.1 A Thermodynamic System and the Control Volume<br/>1.2 Macroscopic Versus Microscopic Points of View<br/>1.3 Properties and State of a Substance<br/>1.4 Processes and Cycles<br/>1.5 Units for Mass, Length, Time, and Force<br/>1.6 Specific Volume and Density<br/>1.7 Pressure<br/>1.8 Energy<br/>1.9 Equality of Temperature<br/>1.10 The Zeroth Law of Thermodynamics<br/>1.11 Temperature Scales<br/>1.12 Engineering Applications<br/>Summary<br/>Problems<br/>2 Properties of a Pure Substance<br/>2.1 The Pure Substance<br/>2.2 The Phase Boundaries<br/>2.3 The P–v–T Surface<br/>2.4 Tables of Thermodynamic Properties<br/>2.5 The Two-Phase States<br/>2.6 The Liquid and Solid States<br/>2.7 The Superheated Vapor States<br/>2.8 The Ideal Gas States<br/>2.9 The Compressibility Factor<br/>2.10 Equations of State<br/>2.11 Engineering Applications<br/>Summary<br/>Problems<br/>3 Energy Equation and First Law of Thermodynamics<br/>3.1 Definition of Work<br/>3.2 Work Done at the Moving Boundary of a Simple Compressible System<br/>3.3 Other Systems that Involve Work<br/>3.4 Concluding Remarks Regarding Work<br/>3.5 Definition of Heat<br/>3.6 Heat Transfer Modes<br/>3.7 Comparison of Heat and Work<br/>3.8 The First Law of Thermodynamics for a Control Mass<br/>3.9 Internal Energy—A Thermodynamic Property<br/>3.10 Problem Analysis and Solution Technique<br/>3.11 The Thermodynamic Property Enthalpy<br/>3.12 The Constant-Volume and Constant-Pressure Specific Heats<br/>3.13 The Internal Energy, Enthalpy, and Specific Heat of Ideal Gases<br/>3.14 Nonuniform Distribution of States and Mass<br/>3.15 The Transient Heat Transfer Process<br/>3.16 The First Law as a Rate Equation<br/>3.17 Engineering Applications<br/>Summary<br/>Problems<br/>4 Energy Analysis for a Control Volume<br/>4.1 Conservation of Mass and the Control Volume<br/>4.2 The Energy Equation for a Control Volume<br/>4.3 The Steady-State Process<br/>4.4 Examples of Steady-State Processes<br/>4.5 Multiple-Flow Devices<br/>4.6 The Transient Flow Process<br/>4.7 Engineering Applications<br/>Summary<br/>Problems<br/>5 The Second Law of Thermodynamics<br/>5.1 Heat Engines, Refrigerators, and Heat Pump<br/>5.2 The Second Law of Thermodynamics<br/>5.3 The Reversible Process<br/>5.4 Factors that Render Processes Irreversible<br/>5.5 The Carnot Cycle<br/>5.6 Two Propositions Regarding the Efficiency of a Carnot Cycle<br/>5.7 The Thermodynamic Temperature Scale<br/>5.8 The Ideal Gas Temperature Scale<br/>5.9 Ideal Versus Real Machines<br/>5.10 The Inequality of Clausius<br/>5.11 Engineering Applications<br/>Summary<br/>Problems<br/>6 Entropy<br/>6.1 Entropy—A Property of a System<br/>6.2 The Entropy of a Pure Substance<br/>6.3 Entropy Change in Reversible Processes<br/>6.4 The Thermodynamic Property Relation<br/>6.5 Entropy Change of a Solid or Liquid<br/>6.6 Entropy Change of an Ideal Gas<br/>6.7 The Reversible Polytropic Process for an Ideal Gas<br/>6.8 Entropy Change of a Control Mass During an Irreversible Process<br/>6.9 Entropy Balance Equation for a Closed System<br/>6.10 Principle of the Increase of Entropy<br/>6.11 Entropy Balance Equation in a Rate Form<br/>6.12 Some General Comments About Entropy and Chaos<br/>Summary<br/>Problems<br/>7 Entropy Analysis for a Control Volume<br/>7.1 The Entropy Balance Equation for a Control Volume<br/>7.2 The Steady-State Process and the Transient Process<br/>7.3 The Steady-State Single-Flow Process<br/>7.4 Principle of the Increase of Entropy<br/>7.5 Engineering Applications; Energy Conservation and Device Efficiency<br/>Summary<br/>Problems<br/>8 Exergy<br/>8.1 Reversible Work, and Irreversibility<br/>8.2 Exergy<br/>8.3 Exergy Balance Equation<br/>8.4 The Second-Law Efficiency<br/>8.5 Engineering Applications<br/>Summary<br/>Problems<br/>9 Gas Power and Refrigeration Systems<br/>9.1 Introduction to Power Systems<br/>9.2 Air-Standard Power Cycles<br/>9.3 The Stirling Cycle and the Ericsson Cycle<br/>9.4 Reciprocating Engine Power Cycles<br/>9.5 The Otto Cycle<br/>9.6 The Diesel Cycle<br/>9.7 The Dual Cycle<br/>9.8 The Atkinson and Miller Cycles<br/>9.9 The Brayton Cycle<br/>9.10 The Simple Gas-Turbine Cycle with a Regenerator<br/>9.11 Gas-Turbine Power Cycle Configurations<br/>9.12 The Air-Standard Cycle for Jet Propulsion<br/>9.13 Introduction to Refrigeration Systems<br/>9.14 The Air-Standard Refrigeration Cycle<br/>Summary<br/>Problems<br/>10 Vapor Power and Refrigeration Systems<br/>10.1 The Simple Rankine Cycle<br/>10.2 Effect of Pressure and Temperature on the Rankine Cycle<br/>10.3 The Reheat Cycle<br/>10.4 The Regenerative Cycle and Feedwater Heaters<br/>10.5 Deviation of Actual Cycles from Ideal Cycles<br/>10.6 Combined Heat and Power: Other Configurations<br/>10.7 The Vapor-Compression Refrigeration Cycle<br/>10.8 Working Fluids for Vapor-Compression Refrigeration Systems<br/>10.9 Deviation of the Actual Vapor-Compression Refrigeration Cycle from the Ideal Cycle<br/>10.10 Refrigeration Cycle Configurations<br/>10.11 The Absorption Refrigeration Cycle<br/>10.12 Exergy Analysis of Cycles<br/>10.13 Combined-Cycle Power and Refrigeration Systems<br/>Summary<br/>Problems<br/>11 Gas Mixtures<br/>11.1 General Considerations and Mixtures of Ideal Gases<br/>11.2 A Simplified Model of a Mixture Involving Gases and a Vapor<br/>11.3 The Energy Equation Applied to Gas–Vapor Mixtures<br/>11.4 The Adiabatic Saturation Process<br/>11.5 Engineering Applications—Wet-Bulb and Dry-Bulb Temperatures and the Psychrometric Chart<br/>Summary<br/>Problems<br/>12 Thermodynamic Relations<br/>12.1 The Clapeyron Equation<br/>12.2 Mathematical Relations for a Homogeneous Phase<br/>12.3 The Maxwell Relations<br/>12.4 Thermodynamic Relations Involving Enthalpy, Internal Energy, and Entropy<br/>12.5 Volume Expansivity and Isothermal and Adiabatic Compressibility<br/>12.6 Real-Gas Behavior and Equations of State<br/>12.7 The Generalized Chart for Changes of Enthalpy at Constant Temperature<br/>12.8 The Generalized Chart for Changes of Entropy at Constant Temperature<br/>12.9 The Property Relation for Mixtures<br/>12.10 Pseudopure Substance Models for Real Gas Mixtures<br/>12.11 Engineering Applications<br/>Summary<br/>Problems<br/>13 Chemical Reactions<br/>13.1 Fuels<br/>13.2 The Combustion Process<br/>13.3 Enthalpy of Formation<br/>13.4 Energy Analysis of Reacting Systems<br/>13.5 Enthalpy and Internal Energy of Combustion; Heating Value<br/>13.6 Adiabatic Flame Temperature<br/>13.7 The Third Law of Thermodynamics and Absolute Entropy<br/>13.8 Second-Law Analysis of Reacting Systems<br/>13.9 Fuel Cells<br/>13.10 Engineering Applications<br/>Summary<br/>Problems<br/>14 Introduction to Phase and Chemical Equilibrium<br/>14.1 Requirements for Equilibrium<br/>14.2 Equilibrium Between Two Phases of a Pure Substance<br/>14.3 Metastable Equilibrium<br/>14.4 Chemical Equilibrium<br/>14.5 Simultaneous Reactions<br/>14.6 Coal Gasification<br/>14.7 Ionization<br/>14.8 Engineering Applications<br/>Summary<br/>Problems<br/>15 Compressible Flow<br/>15.1 Stagnation Properties<br/>15.2 The Momentum Equation for a Control Volume<br/>15.3 Adiabatic, One-Dimensional, Steady-State Flow of an Incompressible Fluid through a Nozzle<br/>15.4 Velocity of Sound in an Ideal Gas<br/>15.5 Reversible, Adiabatic, One-Dimensional Flow of an Ideal Gas Through a Nozzle<br/>15.6 Mass-Flow Rate of an Ideal Gas Through an Isentropic Nozzle<br/>15.7 Normal Shock in an Ideal Gas Flowing Through a Nozzle<br/>15.8 Nozzle and Diffuser Coefficients<br/>Summary<br/>Problems<br/>Appendix A SI Units: Single-State Properties<br/>Appendix B SI Units: Thermodynamic Tables<br/>Appendix C Ideal Gas Specific Heat<br/>C.1 Monatomic Gases (Inert Gases Ar, He, Ne, Xe, Kr; Also N, O, H, Cl, F, …)<br/>C.2 Diatomic and Linear Polyatomic Gases (N2, O2, CO, OH, …, CO2, N2O, …)<br/>C.3 Nonlinear Polyatomic Molecules (H2O, NH3, CH4, C2H6, …)<br/>Appendix D Equations of State<br/>Appendix E Figures<br/>Appendix F Multiple-Choice Questions |
520 ## - SUMMARY, ETC. |
Summary, etc. |
Borgnakke's Fundamentals of Engineering Thermodynamics offers an in-depth introduction to essential principles of thermodynamics with a focus on their practical applications across a variety of engineering fields. It lays the foundation for subsequent studies in such fields as fluid mechanics, heat transfer, and statistical thermodynamics. The Tenth Edition of the book retains its characteristic rigor and systematic approach to thermodynamics with enhanced pedagogical features that aid in student comprehension. |
942 ## - ADDED ENTRY ELEMENTS (KOHA) |
Source of classification or shelving scheme |
Dewey Decimal Classification |
Koha item type |
Books |
952 ## - LOCATION AND ITEM INFORMATION (KOHA) |
-- |
7667 |
952 ## - LOCATION AND ITEM INFORMATION (KOHA) |
-- |
7668 |
952 ## - LOCATION AND ITEM INFORMATION (KOHA) |
-- |
7669 |
952 ## - LOCATION AND ITEM INFORMATION (KOHA) |
-- |
7670 |