Amazon cover image
Image from Amazon.com

An introduction to statistical learning : with applications in R James Gareth

By: Contributor(s): Material type: TextTextPublication details: New York : Springer, ©2013Description: xiv, 426 pages : illustrations (some color) ; 24 cmISBN:
  • 9781461471370
Subject(s): DDC classification:
  • 519.5 GAR
Contents:
Introduction -- Statistical learning -- Linear regression -- Classification -- Resampling methods -- Linear model selection and regularization -- Moving beyond linearity -- Tree-based methods -- Support vector machines -- Unsupervised learning.
Summary: An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra. Provides tools for Statistical Learning that are essential for practitioners in science, industry and other fields. Analyses and methods are presented in R
List(s) this item appears in: New Arrivals February 2021 - Central Library IIITDMK
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 4.0 (1 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Books Books IIITDM Kurnool General Stacks Non-fiction 519.5 GAR (Browse shelf(Opens below)) Available 0002431
Books Books IIITDM Kurnool General Stacks Non-fiction 519.5 GAR (Browse shelf(Opens below)) Available 0002432
Books Books IIITDM Kurnool General Stacks Non-fiction 519.5 GAR (Browse shelf(Opens below)) Available 0002433
Books Books IIITDM Kurnool General Stacks Non-fiction 519.5 GAR (Browse shelf(Opens below)) Available 0002434
Books Books IIITDM Kurnool General Stacks Non-fiction 519.5 GAR (Browse shelf(Opens below)) Available 0002435
Books Books IIITDM Kurnool General Stacks Non-fiction 519.5 GAR (Browse shelf(Opens below)) Checked out 06.12.2025 0002436
Books Books IIITDM Kurnool General Stacks Non-fiction 519.5 GAR (Browse shelf(Opens below)) Available 0002437
Books Books IIITDM Kurnool General Stacks Non-fiction 519.5 GAR (Browse shelf(Opens below)) Available 0002438
Books Books IIITDM Kurnool General Stacks Non-fiction 519.5 GAR (Browse shelf(Opens below)) Available 0002439
Reference Reference IIITDM Kurnool Reference Reference 519.5 GAR (Browse shelf(Opens below)) Not for loan 0002440

Introduction --
Statistical learning --
Linear regression --
Classification --
Resampling methods --
Linear model selection and regularization --
Moving beyond linearity --
Tree-based methods --
Support vector machines --
Unsupervised learning.

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra. Provides tools for Statistical Learning that are essential for practitioners in science, industry and other fields. Analyses and methods are presented in R

There are no comments on this title.

to post a comment.
LIBRARY HOURS
Mon - Sat : 9:00 AM - 5.30 PM
Library will remain closed on public holidays
Contact Us

Librarian
Central Libray
Indian Institute of Information Technology Design and Manufacturing Kurnool
Andhra Pradesh - 518 007

Library Email ID: library@iiitk.ac.in

Copyright @ Central Library | IIITDM Kurnool

Powered by Koha