Neural networks and deep learning : a textbook a textbook Charu C. Aggarwal
Material type: TextPublication details: Cham, Switzerland, Springer, 2018Description: xxiii, 497 pages 27 cmISBN:- 9783319944623
- 006.3 AGG
Item type | Current library | Collection | Call number | Status | Date due | Barcode |
---|---|---|---|---|---|---|
Books | IIITDM Kurnool General Stacks | Non-fiction | 006.3 AGG (Browse shelf(Opens below)) | Checked out | 03.05.2025 | 0005473 |
1 An Introduction to Neural Networks.- 2 Machine Learning with Shallow Neural Networks.- 3 Training Deep Neural Networks.- 4 Teaching Deep Learners to Generalize.- 5 Radical Basis Function Networks.- 6 Restricted Boltzmann Machines.- 7 Recurrent Neural Networks.- 8 Convolutional Neural Networks.- 9 Deep Reinforcement Learning.- 10 Advanced Topics in Deep Learning.
This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered
There are no comments on this title.