Amazon cover image
Image from Amazon.com

Introduction to machine learning with Python : a guide for data scientists Andreas C Müller; Sarah Guido

By: Material type: TextTextPublication details: Sebastopol, CA : O'Reilly Media, Inc, ©2017Edition: First editionDescription: xii, 378 pages : illustrations, 24 cmISBN:
  • 9789352134571
Subject(s): DDC classification:
  • 005.133 MUL
Contents:
Introduction -- Supervised learning -- Unsupervised learning and preprocessing -- Representing data and engineering features -- Model evaluation and improvement -- Algorithm chains and pipelines -- Working with text data -- Wrapping up.
Summary: Machine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination. You'll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Müller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book. With this book, you'll learn: Fundamental concepts and applications of machine learning ; Advantages and shortcomings of widely used machine learning algorithms ; How to represent data processed by machine learning, including which data aspects to focus on ; Advanced methods for model evaluation and parameter tuning ; The concept of pipelines for chaining models and encapsulating your workflow ; Methods for working with text data, including text-specific processing techniques ; Suggestions for improving your machine learning and data science skills
List(s) this item appears in: New Arrivals December 2021
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Books Books IIITDM Kurnool General Stacks Non-fiction 005.133 MUL (Browse shelf(Opens below)) Checked out 22.01.2025 0004014

Introduction --
Supervised learning --
Unsupervised learning and preprocessing --
Representing data and engineering features --
Model evaluation and improvement --
Algorithm chains and pipelines --
Working with text data --
Wrapping up.

Machine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination. You'll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Müller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book. With this book, you'll learn: Fundamental concepts and applications of machine learning ; Advantages and shortcomings of widely used machine learning algorithms ; How to represent data processed by machine learning, including which data aspects to focus on ; Advanced methods for model evaluation and parameter tuning ; The concept of pipelines for chaining models and encapsulating your workflow ; Methods for working with text data, including text-specific processing techniques ; Suggestions for improving your machine learning and data science skills

There are no comments on this title.

to post a comment.
LIBRARY HOURS
Mon - Sat : 9:00 AM - 5.30 PM
Library will remain closed on public holidays
Contact Us

Librarian
Central Libray
Indian Institute of Information Technology Design and Manufacturing Kurnool
Andhra Pradesh - 518 007

Library Email ID: library@iiitk.ac.in

Copyright @ Central Library | IIITDM Kurnool

Powered by Koha