Amazon cover image
Image from Amazon.com

Foundations of data science Avrim Blum

By: Material type: TextTextPublication details: NEW DELHI Hindustan ©2020Description: 504pISBN:
  • 9789386279804
DDC classification:
  • 004 BLU
Contents:
Introduction -- High-dimensional space -- Best-fit subspaces and Singular Value Decomposition (SVD) -- Random walks and Markov chains -- Machine learning -- Algorithms for massive data problems: streaming, sketching, and sampling -- Clustering -- Random graphs -- - Topic models, non-negative matrix factorization, hidden Markov models, and graphical models -- Other topics -- Wavelets -
Summary: This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data
List(s) this item appears in: New Arrivals December 2021
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Books Books IIITDM Kurnool General Stacks Non-fiction 004 BLU (Browse shelf(Opens below)) Available 0004007
Books Books IIITDM Kurnool General Stacks Non-fiction 004 BLU (Browse shelf(Opens below)) Available 0004008

Introduction --
High-dimensional space --
Best-fit subspaces and Singular Value Decomposition (SVD) --
Random walks and Markov chains --
Machine learning --
Algorithms for massive data problems: streaming, sketching, and sampling --
Clustering --
Random graphs --
- Topic models, non-negative matrix factorization, hidden Markov models, and graphical models --
Other topics --
Wavelets -

This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data

There are no comments on this title.

to post a comment.
LIBRARY HOURS
Mon - Sat : 9:00 AM - 5.30 PM
Library will remain closed on public holidays
Contact Us

Librarian
Central Libray
Indian Institute of Information Technology Design and Manufacturing Kurnool
Andhra Pradesh - 518 007

Library Email ID: library@iiitk.ac.in

Copyright @ Central Library | IIITDM Kurnool

Powered by Koha