000 | 01018nam a22001697a 4500 | ||
---|---|---|---|
999 |
_c1328 _d1328 |
||
005 | 20211208135012.0 | ||
008 | 211208b ||||| |||| 00| 0 eng d | ||
020 | _a9781493938438 | ||
082 |
_a006.4 _bBIS |
||
100 | _a Bishop, Christopher M. | ||
245 |
_a Pattern recognition and machine learning _c Christopher M Bishop |
||
260 |
_aNew York : _bSpringer, _c ©2006. |
||
300 | _a738 pages | ||
505 |
_t Probability Distributions.- _t Linear Models for Regression.- _t Linear Models for Classification.- _tNeural Networks.- . _tKernel Methods.- _tSparse Kernel Machines.- _tGraphical Models.- _t Mixture Models and EM.- _tApproximate Inference.- _tSampling Methods.- _tContinuous Latent Variables.- _tSequential Data.- _tCombining Models |
||
520 | _aFamiliarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory. | ||
942 |
_2ddc _cBK |