000 01018nam a22001697a 4500
999 _c1328
_d1328
005 20211208135012.0
008 211208b ||||| |||| 00| 0 eng d
020 _a9781493938438
082 _a006.4
_bBIS
100 _a Bishop, Christopher M.
245 _a Pattern recognition and machine learning
_c Christopher M Bishop
260 _aNew York :
_bSpringer,
_c ©2006.
300 _a738 pages
505 _t Probability Distributions.-
_t Linear Models for Regression.-
_t Linear Models for Classification.-
_tNeural Networks.- .
_tKernel Methods.-
_tSparse Kernel Machines.-
_tGraphical Models.-
_t Mixture Models and EM.-
_tApproximate Inference.-
_tSampling Methods.-
_tContinuous Latent Variables.-
_tSequential Data.-
_tCombining Models
520 _aFamiliarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
942 _2ddc
_cBK