000 | 01556nam a22002177a 4500 | ||
---|---|---|---|
005 | 20230302150609.0 | ||
008 | 230302b |||||||| |||| 00| 0 eng d | ||
020 | _a9789352136414 | ||
082 |
_a005.133 _bMCK |
||
100 | _aMcKinney, Wes | ||
245 |
_aPython for data analysis : _bData Wrangling wit Pandas, NumPy, and IPython _cWes McKinney |
||
250 | _a2nd Ed. | ||
260 |
_aBeijing : _bO'Reilly, _c2018 |
||
300 |
_a522 pages : _bill.; _c24 cm. |
||
505 |
_tPreliminaries
_tPython language basics, IPython, and Jupyter notebooks _tBuilt-in data structures, functions, and files _tNumPy basics: arrays and vectorized computation _tGetting started with pandas _tData loading, storage, and file formats _tData cleaning and preparation _tData wrangling: join, combine, and reshape _tPlotting and visualization _tData aggregation and group operations _tTime series _tAdvanced pandas _tIntroduction to modeling libraies in Python _tData analysis examples _tAdvanced NumPy _tMore on the IPython system |
||
520 | _aGet complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You'll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process | ||
650 | _aPython (Computer program language) | ||
650 | _aData mining | ||
650 | _aProgramming languages (Electronic computers) | ||
942 |
_2ddc _cBK |
||
999 |
_c1918 _d1918 |