000 01556nam a22002177a 4500
005 20230302150609.0
008 230302b |||||||| |||| 00| 0 eng d
020 _a9789352136414
082 _a005.133
_bMCK
100 _aMcKinney, Wes
245 _aPython for data analysis :
_bData Wrangling wit Pandas, NumPy, and IPython
_cWes McKinney
250 _a2nd Ed.
260 _aBeijing :
_bO'Reilly,
_c2018
300 _a522 pages :
_bill.;
_c24 cm.
505 _tPreliminaries
_tPython language basics, IPython, and Jupyter notebooks
_tBuilt-in data structures, functions, and files
_tNumPy basics: arrays and vectorized computation
_tGetting started with pandas
_tData loading, storage, and file formats
_tData cleaning and preparation
_tData wrangling: join, combine, and reshape
_tPlotting and visualization
_tData aggregation and group operations
_tTime series
_tAdvanced pandas
_tIntroduction to modeling libraies in Python
_tData analysis examples
_tAdvanced NumPy
_tMore on the IPython system
520 _aGet complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You'll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process
650 _aPython (Computer program language)
650 _aData mining
650 _aProgramming languages (Electronic computers)
942 _2ddc
_cBK
999 _c1918
_d1918