000 | 03953cam a22005895i 4500 | ||
---|---|---|---|
001 | 21817354 | ||
005 | 20230302152221.0 | ||
006 | m |o d | | ||
007 | cr ||||||||||| | ||
008 | 181224s2019 xxu|||| o |||| 0|eng | ||
010 | _a 2019763095 | ||
020 | _a9781484242469 | ||
024 | 7 |
_a10.1007/978-1-4842-4246-9 _2doi |
|
035 | _a(DE-He213)978-1-4842-4246-9 | ||
040 |
_aDLC _beng _epn _erda _cDLC |
||
072 | 7 |
_aCOM051360 _2bisacsh |
|
072 | 7 |
_aUMX _2bicssc |
|
072 | 7 |
_aUMX _2thema |
|
082 | 0 | 4 |
_a005.133 _223 _bJOH |
100 | 1 | _aJohansson, Robert, | |
100 | 1 | _eauthor. | |
245 | 1 | 0 |
_aNumerical Python : _bScientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib / _cby Robert Johansson. |
250 | _a2nd ed. 2019. | ||
260 |
_bApress, _c2023. |
||
264 | 1 |
_aBerkeley, CA : _bApress : _bImprint: Apress, _c2019. |
|
300 |
_axxiii, 700 pages : _b168 illustrations, 63 illustrations, _c24 cm. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
505 | 0 |
_t1. Introduction to Computing with Python -- _t2. Vectors, Matrices and Multidimensional Arrays -- _t3. Symbolic Computing -- _t4. Plotting and Visualization -- _t5. Equation Solving -- _t6. Optimization -- _t7. Interpolation -- _t8. Integration -- _t9. Ordinary Differential Equations -- _t10. Sparse Matrices and Graphs -- _t11. Partial Differential Equations -- _t12. Data Processing and Analysis -- _t13. Statistics -- _t14. Statistical Modeling -- _t15. Machine Learning -- _t16. Bayesian Statistics -- _t17. Signal and Image Processing -- _t18. Data Input and Output -- _t19. Code Optimization. |
|
520 | _aLeverage the numerical and mathematical modules in Python and its standard library as well as popular open source numerical Python packages like NumPy, SciPy, FiPy, matplotlib and more. This fully revised edition, updated with the latest details of each package and changes to Jupyter projects, demonstrates how to numerically compute solutions and mathematically model applications in big data, cloud computing, financial engineering, business management and more. Numerical Python, Second Edition, presents many brand-new case study examples of applications in data science and statistics using Python, along with extensions to many previous examples. Each of these demonstrates the power of Python for rapid development and exploratory computing due to its simple and high-level syntax and multiple options for data analysis. After reading this book, readers will be familiar with many computing techniques including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling and machine learning. | ||
588 | _aDescription based on publisher-supplied MARC data. | ||
650 | 0 | _aArtificial intelligence. | |
650 | 0 | _aBig data. | |
650 | 0 | _aComputer software. | |
650 | 0 | _aPython (Computer program language). | |
650 | 1 | 4 | _aPython. |
650 | 2 | 4 | _aArtificial Intelligence. |
650 | 2 | 4 | _aBig Data. |
650 | 2 | 4 | _aMathematical Software. |
650 | 1 | 4 | _0https://scigraph.springernature.com/ontologies/product-market-codes/I29080 |
650 | 2 | 4 | _0https://scigraph.springernature.com/ontologies/product-market-codes/I21000 |
650 | 2 | 4 | _0https://scigraph.springernature.com/ontologies/product-market-codes/I29120 |
650 | 2 | 4 | _0https://scigraph.springernature.com/ontologies/product-market-codes/M14042 |
776 | 0 | 8 |
_iPrint version: _tNumerical Python _z9781484242452 _w(DLC) 2018966798 |
776 | 0 | 8 |
_iPrinted edition: _z9781484242452 |
776 | 0 | 8 |
_iPrinted edition: _z9781484242476 |
776 | 0 | 8 |
_iPrinted edition: _z9781484246481 |
906 |
_a0 _bibc _corigres _du _encip _f20 _gy-gencatlg |
||
942 |
_2ddc _cBK |
||
999 |
_c1920 _d1920 |