000 | 01369nam a22002297a 4500 | ||
---|---|---|---|
999 |
_c686 _d686 |
||
005 | 20200826163655.0 | ||
008 | 190107b ||||| |||| 00| 0 eng d | ||
020 | _a9789332570313 | ||
040 | _c0 | ||
082 |
_a004.89 _bHAY |
||
100 | _aHaykin, Simon | ||
245 |
_aNeural networks and learning machines _cSimon Haykin |
||
250 | _a3/e | ||
260 |
_aNoida _bPearson _c2016 |
||
300 |
_a909p. _bill., _c24cm |
||
505 |
_tRosenblatt's perceptron --
_tModel building through regression -- _tThe least-mean-square algorithm -- _tMultilayer perceptrons -- _tKernel methods and radial-basis function networks -- _tSupport vector machines -- _tRegularization theory -- _tPrincipal-components analysis -- _tSelf-organizing maps -- _tInformation-theoretic learning models -- _tStochastic methods rooted in statistical mechanics -- _tDynamic programming -- _tNeurodynamics -- _tBayseian filtering for state estimation of dynamic systems -- _tDynamically driven recurrent networks. |
||
520 | _aUsing a wealth of case studies to illustrate the real-life, practical applications of neural networks, this state-of-the-art text exposes students to many facets of Neural Networks | ||
650 | _aNeural networks (Computer science) | ||
650 | _aNeural networks (Computer science) -- Problems, exercises, etc. | ||
650 | _a Lernendes System | ||
942 |
_2ddc _cBK |