000 01369nam a22002297a 4500
999 _c686
_d686
005 20200826163655.0
008 190107b ||||| |||| 00| 0 eng d
020 _a9789332570313
040 _c0
082 _a004.89
_bHAY
100 _aHaykin, Simon
245 _aNeural networks and learning machines
_cSimon Haykin
250 _a3/e
260 _aNoida
_bPearson
_c2016
300 _a909p.
_bill.,
_c24cm
505 _tRosenblatt's perceptron --
_tModel building through regression --
_tThe least-mean-square algorithm --
_tMultilayer perceptrons --
_tKernel methods and radial-basis function networks --
_tSupport vector machines --
_tRegularization theory --
_tPrincipal-components analysis --
_tSelf-organizing maps --
_tInformation-theoretic learning models --
_tStochastic methods rooted in statistical mechanics --
_tDynamic programming --
_tNeurodynamics --
_tBayseian filtering for state estimation of dynamic systems --
_tDynamically driven recurrent networks.
520 _aUsing a wealth of case studies to illustrate the real-life, practical applications of neural networks, this state-of-the-art text exposes students to many facets of Neural Networks
650 _aNeural networks (Computer science)
650 _aNeural networks (Computer science) -- Problems, exercises, etc.
650 _a Lernendes System
942 _2ddc
_cBK