000 | 01247 a2200229 4500 | ||
---|---|---|---|
999 |
_c946 _d946 |
||
005 | 20200925115752.0 | ||
008 | 200925b ||||| |||| 00| 0 eng d | ||
020 | _a9780195667998 | ||
040 | _bDDC | ||
082 |
_a006.4 _bBIS |
||
100 | _aBishop, Christopher M. | ||
245 | _aNeural networks for pattern recognition | ||
250 | _aIndian edition. | ||
260 |
_aOxford : _bOxford University Press, _c1995. |
||
300 |
_bxvii, 482 pages : _aillustrations ; _c24 cm |
||
505 |
_t1. Statistical Pattern Recognition --
_t2. Probability Density Estimation -- _t3. Single-Layer Networks -- _t4. The Multi-layer Perceptron -- _t5. Radial Basis Functions -- _t6. Error Functions -- _t7. Parameter Optimization Algorithms -- _t8. Pre-processing and Feature Extraction -- _t9. Learning and Generalization -- _t10. Bayesian Techniques. |
||
520 | _aThis is a comprehensive treatment of feed-forward neural networks from the perspective of statistical pattern recognition. After introducing the basic concepts of pattern recognition, the book describes techniques for modelling probability density functions. | ||
650 | _aPattern recognition systems | ||
650 | _aNeural networks (Computer science) | ||
942 |
_cG _2ddc |