000 01183nam a22001697a 4500
005 20250603144953.0
008 250603b |||||||| |||| 00| 0 eng d
020 _a9781259096952
082 _a006.31
_bMIT
100 _aMitchell, Tom M
245 _aMachine learning
_cMitchell, Tom M
260 _a Chennai :
_bMcGraw Hill Education India Pvt. Ltd,
_c 2013.
300 _axvii, 414p
505 _tChapter 1. Introduction Chapter 2. Concept Learning and the General-to-Specific Ordering Chapter 3. Decision Tree Learning Chapter 4. Artificial Neural Networks Chapter 5. Evaluating Hypotheses Chapter 6. Bayesian Learning Chapter 7. Computational Learning Theory Chapter 8. Instance-Based Learning Chapter 9. Inductive Logic Programming Chapter 10. Analytical Learning Chapter 11. Combining Inductive and Analytical Learning Chapter 12. Reinforcement Learning.
520 _a Mitchell covers the field of machine learning, the study of algorithms that allow computer programs to automatically improve through experience and that automatically infer general laws from specific data. Tags from this library: No tags from this library for this title
942 _2ddc
_cBK
999 _c2556
_d2556